Titanium alloy surface properties have an essential role in the interaction of dental implants with bone, and alteration of the surface of the implant could improve osseointegration. This study was designed to investigate the effect of different heat treatment temperatures on titanium alloy surface properties for dental implants. The effect of different temperatures of heat treatment (750°C, 850°C, 950°C and 1050°C) were investigated on the surface topography, surface chemistry, titanium oxide layer thickness, blood contact angle, & blood drop diameter of titanium alloy. The disks were prepared from titanium alloy (Ti-6Al-4V) and the samples were divided into five groups depending on the different temperatures of heat treatment. The heat treatment at 1050 °C for 30 minutes significantly enhanced the titanium alloy surface characteristics; surface topography, titanium oxide layer thickness, surface chemistry, blood contact angle, and blood drop diameter. This may result in faster and stronger bone formation around dental implants.
The effects of BaCl2 dopant on the optical properties of poly (vinyl alcohol) have been investigated. Pure and BaCl2 doped PVA films were prepared using solvent casting method. These films were characterized using UV/VIS technique in order to estimate the kind of transition which was found to be indirect transition. The value of the optical energy gap was decrease with increasing dopant concentration.
Refractive index, extinction coefficient and Urbach tail have been also investigated; it was found that all the above parameters affects by doping.
Overlapped have been prepared from epoxy resin material added to carbon Nanotube and percentages weight (0.1, 0.05, 0.01) % Studied the mechanical properties of the composite (bending, tensile an d hardness) has been found that the Flexural and tensile modulus of the composites were higher than the pure epoxy resin this may be due to the high mechanical strength of carbon nano tube (CNT). The hardness of the epoxy carbon Nanotube composites increased and the reason is due to increased overlap and stacking between the additives and material basis, which reduces the movement of polymer molecules leading to increased resistance to scratching material and cutting, will become more resistance to plastic deformation.
PVA:PEG/MnCl2 composites have been prepared by adding (MnCl2) to the mixture of the poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) with different weight percentages (0, 2, 4, 6, 8 and 10) wt.% by using casting method. The type of charge carriers, concentration (nH) and Hall mobility (μH) have been estimated from Hall measurements and show that the films of all concentration have a negative Hall coefficient. In D.C measurement increase temperature leads to decrease the electrical resistance. The D.C conductivity of the composites increases with the increasing of the concentration of additive particles and temperature. The activation energy decreases for all composites with increasing the concentration of the additive particles.
... Show MoreCowpea is a very important legume in Nigeria that is being utilized to Substitute high-cost animal protein for low-income people. The knowledge of some physical properties of various moisture contents is of utmost importance in the design of its handling and processing equipment and machinery, which is the aim of this work, which studied the physical properties of IT99K-573-1-1 (SAMPEA14) variety of Cowpea within 8.77 to 21.58 % db moisture content. The properties studied include Major, Intermediate, and Minor diameters, Sphericity, Surface area, Specific gravity, Volume, Bulk density, 50-tap density, 100-tap density, 1250-tap density, seed mass, Angle of repose, Geometric mean diameter, and Arithmetic mean diameter. The
... Show MoreMortar of ordinary Portland cement was blended with cockles shell
powder at different weight ratios to investigate the effect of powder
admixture on their strength and thermal conductivity. Results showed
that addition of cockles shell powder at 50% of mortar weight
improves hardness and compressive strength notably and reduces the
thermal conductivity of the end product. Results suggest the
possibility to incorporate cockles shell powders as constituents in
cement mortars for construction and plastering applications.
In this paper, a study was made to determine the properties of Jovian radio bursts emitted at frequency 20.1MHZ. The data were provided from the Radio Jove archive for twelve years (2000-2012) for multi stations. The duration time for Long bursts (L) was (10-30) seconds and for Short bursts (S) was (10-20) seconds. The effect of radio bursts from the Sun and the galactic background were calculated at the same frequency and were found that radio bursts from the Sun will reduce the occurrence probability of Jovian radio bursts much more than radio bursts from the galactic background. The distribution of Jovian radio bursts was different; the occurrence probability with respect to the northern latitudes was more than the southern latitudes.
Improving the ability of asphalt pavement to survive the heavily repeated axle loads and weathering challenges in Iraq has been the subject of research for many years. The critical need for such data in the design and construction of more durable flexible pavement in bridge deck material is paramount. One of new possible steps is the epoxy asphalt concrete, which is classified as a superior asphalt concrete in roads and greatly imparts the level of design and construction. This paper describes a study on 40-50 penetration graded asphalt cement mixed with epoxy to produce asphalt concrete mixtures. The tests carried out are the Marshall properties, permanent deformation, flexural fatigue cracking and moisture damage. Epoxy asphalt mixes perf
... Show MoreOne of the major problems in modern construction is the accumulation of construction and demolition waste; this study thus examines the consumption of waste brick in concrete based on the use of blended nano brick powder as replacement for cement and as a fine aggregate. Seven concrete mixes were developed according to ACI 211.1 using recycled waste brick. Nano powder brick at 0, 5, and 10% was used as a replacement by cement weight, with other mixes featuring 10, 20, and 30% partial replacement by volume of river sand with brick. The experimental results for replacement of cement with nano brick powder showed an enhancement in mechanical properties (compressive, flexural, and tensile strength) at 7,
The eff ect of partial substitution for lanthanum (La) on the structural properties of the compound Y1-xLaxBa4Cu7O15+δ were studied. The variation of (x) are x=0.1, 0.2 and 0.3, which was synthesized by solid state reaction method. The mixed powder was pressed with pressure (7 ton / cm2) as a disc (1.5 cm) diameter and a thickness of (0.25 to 0.3 cm). The samples were sintering by 120 °C / hour with a changing rate from room temperature to 850 ° C through 72 hours. XRD analysis using to calculate crystal size, strain and degree of crystallinity. It was found all samples have orthorhombic structure and change of structure with increasing lanthanum concentration. It was shown that the change lanthanum concentrations of all our samp
... Show More