Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
The current study was designed to explore the association between the pigments production and biofilm construction in local Pseudomonas aeruginosa isolates. Out of 143 patients suffering from burns, urinary tract infections (UTI), respiratory tract infections and cystic fibrosis obtained from previous study by Mahmood (2015), twenty two isolates (15.38%) were identified from (11) hospitals in Iraq, splitted into three provinces, Baghdad, Al-Anbar and Karbala for the duration of June 2017 to April 2018. Characterization was carried out by using microscopical, morphological and biochemical methods which showed that all these isolates belong to P. aeruginosa. Screening of biofilm production isolates was carried out by usi
... Show MoreVision loss happens due to diabetic retinopathy (DR) in severe stages. Thus, an automatic detection method applied to diagnose DR in an earlier phase may help medical doctors to make better decisions. DR is considered one of the main risks, leading to blindness. Computer-Aided Diagnosis systems play an essential role in detecting features in fundus images. Fundus images may include blood vessels, exudates, micro-aneurysm, hemorrhages, and neovascularization. In this paper, our model combines automatic detection for the diabetic retinopathy classification with localization methods depending on weakly-supervised learning. The model has four stages; in stage one, various preprocessing techniques are app
Investigating gender differences based on emotional changes becomes essential to understand various human behaviors in our daily life. Ten students from the University of Vienna have been recruited by recording the electroencephalogram (EEG) dataset while watching four short emotional video clips (anger, happiness, sadness, and neutral) of audiovisual stimuli. In this study, conventional filter and wavelet (WT) denoising techniques were applied as a preprocessing stage and Hurst exponent
Educational and psychological adjustment considered to be one of the effective and serious matters at people dealings and behaviors. Generally, psychological adjustment reflects positively on an individual mental health and their capability to be creative at their field. In contrast to those people who lack this feature. As for educational adjustment, it refers to the compatibility and harmony between an individuals and people around. Thus, these features should be available among students particularly those who stay in students' hostel since they live far from their families. The findings of study revealed that there is Educational and psychological adjustment between male and female. Besides, significant differences were showed
... Show MoreAbstract
The current research aims to identify the level of E-learning among middle school students, the level of academic passion among middle school students, and the correlation between e-learning and academic passion among middle school students. In order to achieve the objectives of the research, the researcher developed two questionnaires to measure the variables of the study (e-learning and study passion) among students, these two tools were applied to the research sample, which was (380) male and female students in the first and second intermediate classes. The research concluded that there is a relationship between e-learning and academic passion among students.