The research’s main goal is to investigate the effects of using magnetic water in concrete mixes with regard to various mechanical properties such as compressive, flexural, and splitting tensile strength. The concrete mix investigated was designed to attain a specified cylinder compressive strength (30 MPa), with mix proportions of 1:1.8:2.68 cement to sand to crushed aggregate. The cement content was about 380 kg/m3, with a w/c ratio equal to 0.54, sand content of about 685 kg/m3, and gravel content of about 1,020 kg/m3. Magnetic water was prepared via passing ordinary water throughout a magnetic field with a magnetic intensity of 9,000 Gauss. The strength test
In this work the structural, electrical and optical Properties of CuO semiconductor films had been studied, which prepared at three thickness (100, 200 and 500 nm) by spray pyrolysis method at 573K substrate temperatures on glass substrates from 0.2M CuCl2•2H2O dissolved in alcohol. Structural Properties shows that the films have only a polycrystalline CuO phase with preferential orientation in the (111) direction, the dc conductivity shows that all films have two activation energies, Ea1 (0.45-0.66 eV) and Ea2 (0.055-.0185 eV), CuO films have CBH (Correlated Barrier Hopping) mechanism for ac-conductivity. The energy gap between (1.5-1.85 eV).
The study effect Graphene on optical and electrical properties of glass prepared on glass substrates using sol–gel dip-coating technique. The deposited film of about (60-100±5%) nm thick. Optical and electrical properties of the films were studied under different preparation conditions, such as graphene concentration of 2, 4, 6 and 8 wt%. The results show that the optical band gap for glass-graphene films decreasing after adding the graphene. Calculated optical constants, such as transmittance, extinction coefficient are changing after adding graphene. The structural morphology and composition of elements for the samples have been demonstrated using SEM and EDX. The electrical properties of films include DC electrical conductivity; we
... Show MoreThe grapheme Flakes were prepared by reduction graphite oxide which was prepared by Hummer’s method. X-ray diffraction (XRD) pattern showed that the graphene oxide have a sharp peak at (001) with d-spacing d001= 7.4Å at angle 2ϴ=11.85˚and graphene has broad peak at (002) with d-spacing d002=3.4Å at angle 2ϴ= 25.72˚ with lattice constant (a=2.47 Å). The particle size was calculated by using equation Debye - Scherer and Williamson - Hall equations, Scanning electron microscopy examination and particle size analyzer proved that the graphene Flakes were in nano size. Also the surface area of nanoparticles showed a value 270 m2/g . The micrographs of (scanning electron microscopy) showed that graphene oxide has a fluffy aggregation a
... Show MoreThe dental amalgam of radioactive materials in the restoration of teeth because of its readily adaptable to existing materials in the oral cavity in addition to mechanical properties such as hardness mechanical resistance Alndgat and others in this study were prepared Almlagm used Guy dental restoration of silver alloy tin plus some elements to improve the characteristicsmechanical such as copper, zinc or indium in addition to mercury
The sol-gel preparation technique of transparent silica monoliths containing up to 0.5 M of samarium have been described. The sol-gel processing parameters are: acid catalyzed hydrolysis and controlled drying. The prepared monoliths are analyzed by X-ray diffraction, pycnometer measurements, Fourier transformation infrared spectroscopy and optical spectroscopy. The oscillator strengths of the Sm3+ ions in the silica monoliths are calculated. The results show a linear concentration dependence of some Sm3+ transitions in UV/Vis absorption spectra and formation of Sm3+ clusters inside the pores structure of silica monoliths at high Sm3+ concentration
In this study, Mn-Ni Ferrite was prepared by using two composites of manganese ferrite ( MnFe2o4 ) and Nicle Ferrite ( NiFe2O4) tested by X-Ray diffraction (XRD) method. The dielectric constant (ðœ€Ì…) and the dielectric loss tangent (ð‘¡ð‘Žð‘› ð›¿) were studied for the ferrite system prepared at different frequencies (100, 200… and 5000 kHz). It was found that the values of (ðœ€Ì…) and (ð‘¡ð‘Žð‘› ð›¿) decrease with the increase of frequencies.
This work aims to provide a statistical analysis of metal removal during the Magnetic Abrasive Finishing process (MAF) and find out the mathematical model which describes the relationship between the process parameters and metal removal, also estimate the impact of the parameters on metal removal. In this study, the single point incremental forming was used to form the truncated cone made of low carbon steel (1008-AISI) based on the Z-level tool path. Then the finishing was accomplished using a magnetic abrasive process based on the Box-Behnken design of the experiment using Minitab 17 software was used to finish the surface of the formed truncated cone. The influences of different parameters (feed rate, machining step s
... Show MoreThe D.C. electrical properties of poly (ethylene oxide)/MgCl2 composites were investigated as a function of different MgCl2 filler concentrations (0, 5, 10, 15 and 20 wt.%) and different temperatures in the range (276–333)o K at three different polarizing fields. Resistivity:ï² and dc Conductivity: σ dc were measured, and the activation energy: Ea of the thermal rate-process of the electrical conduction was investigated. It was found that the current-voltage measurement results exhibited Ohmic resistance behavior, the composites exhibit negative temperature reliance of resistivity and enhancement in the D.C. electrical conductivity with both temperature and MgCl2 concentration. The determined activation energy was found to
... Show More