Cadmium oxide (CdO) thin films were deposited using the sequencing ion layer adsorption and reaction (SILAR) method. In this study, the effect of the pH value of an aqueous solution of cadmium acetate at a concentration of 0.2 mol of the cadmium oxide film was determined. The solution source for the cadmium oxide film was cadmium ions and an aqueous ammonia solution. The CdO films were deposited on glass substrates at a temperature of 90 ℃. The cadmium oxide film thickness was determined by the weight difference method at pH values (7.2, 8.2). X-ray diffraction (XRD) and scanning electron microscopy (SEM) showed that the size of the crystals increased with the increase in the solution (pH). While the UV-visible spectra of the fil
... Show MoreNew complexes of M(II) with mixed ligand of 5-Chlorosalicylic acid (CSA) C7H5ClO3 as primary ligand and L- Valine (L-Val) C5H11NO2 as a secondary ligand were prepared and characterized by elemental analysis (C.H.N), UV., FT-IR, magnetic susceptibility, μeff (B.M) as well as the conductivity measurements (Λm ). In the complexes, the 5-chlorosalicylic acid is bidentate in all complexes coordinating through –OH- and –COO- groups; also L-Valine behaves as a bidentate ligand in all complexes through –NH2 and –COO- groups. These five mixed ligand complexes formulated as Na3[M(CSA)2(L-Val)]. The proposed molecular structure for all complexes is octahedral geometries. The synthesis complexes were tested in vitro for against four bacteria
... Show MoreNew complexes of M(II) with mixed ligand of 5-Chlorosalicylic acid (CSA) C7H5ClO3 as primary ligand and L- Valine (L-Val) C5H11NO2 as a secondary ligand were prepared and characterized by elemental analysis (C.H.N), UV., FT-IR, magnetic susceptibility, μeff (B.M) as well as the conductivity measurements (Λm ). In the complexes, the 5-chlorosalicylic acid is bidentate in all complexes coordinating through –OH- and –COO- groups; also L-Valine behaves as a bidentate ligand in all complexes through –NH2 and –COO- groups. These five mixed ligand complexes formulated as Na3[M(CSA)2(L-Val)]. The proposed molecular structure for all complexes is octahedral geometries. The synthesis complexes were tested in vitro for against four bacteria
... Show MoreNew complexes of M(II) with mixed ligand of 5-Chlorosalicylic acid (CSA) C7H5ClO3 as primary ligand and L- Valine (L-Val) C5H11NO2 as a secondary ligand were prepared and characterized by elemental analysis (C.H.N), UV., FT-IR, magnetic susceptibility, µeff (B.M) as well as the conductivity measurements (Λm ). In the complexes, the 5-chlorosalicylic acid is bidentate in all complexes coordinating through –OH- and –COO- groups; also L-Valine behaves as a bidentate ligand in all complexes through –NH2 and –COO- groups. These five mixed ligand complexes formulated as Na3[M(CSA)2(L-Val)]. The proposed molecular structure for all complexes is octahedral geometries. The synthesis complexes were tested in vitro for against four bacteria
... Show MoreIraqi crude Atmospheric residual fraction supplied from al-Dura refinery was treated to remove metals contaminants by solvent extraction method, with various hydrocarbon solvents and concentrations. The extraction method using three different type solvent (n-hexane, n-heptane, and light naphtha) were found to be effective for removal of oil-soluble metals from heavy atmospheric residual fraction. Different solvents with using three different hydrocarbon solvents (n-hexane, n-heptane, and light naphtha) .different variables were studied solvent/oil ratios (4/1, 8/1, 10/1, 12/1, and 15/1), different intervals of perceptual (15, 30-60, 90 and 120 min) and different temperature (30, 45, 60 and 90 °C) were used. The metals removal perce
... Show MoreIraqi crude Atmospheric residual fraction supplied from al-Dura refinery was treated to remove metals contaminants by solvent extraction method, with various hydrocarbon solvents and concentrations. The extraction method using three different type solvent (n-hexane, n-heptane, and light naphtha) were found to be effective for removal of oil-soluble metals from heavy atmospheric residual fraction. Different solvents with using three different hydrocarbon solvents (n-hexane, n-heptane, and light naphtha) .different variables were studied solvent/oil ratios (4/1, 8/1, 10/1, 12/1, and 15/1), different intervals of perceptual (15, 30-60, 90 and 120 min) and different temperature (30, 45, 60 and 90 °C) were used. The metals removal percent we
... Show MoreThe Sonic Scanner is a multifunctional instrument designed to log wells, assess elastic characteristics, and support reservoir characterisation. Furthermore, it facilitates comprehension of rock mechanics, gas detection, and well positioning, while also furnishing data for geomechanical computations and sand management. The present work involved the application of the Sonic Scanner for both basic and advanced processing of oil-well-penetrating carbonate media. The study aimed to characterize the compressional, shear, Stoneley slowness, rock mechanical properties, and Shear anisotropy analysis of the formation. Except for intervals where significant washouts are encountered, the data quality of the Monopole, Dipole, and Stoneley modes is gen
... Show MoreThe present study aims to remove nickel ions from solution of the simulated wastewater using (Laminaria saccharina) algae as a biosorbent material. Effects of experimental parameters such as temperature at (20 - 40) C⁰, pH at (3 - 7) at time (10 - 120) min on the removal efficiency were studied.
Box-Wilson method was adopted to obtain a relationship between the above three experimental parameters and removal percentage of the nickel ions. The experimental data were fitted to second order polynomial model, and the optimum conditions for the removal process of nickel ions were obtained.
The highest removal percentage of nickel ions obtained was 98.8 %, at best operating conditions (Temperature 35 C⁰, pH 5 and Time 10 min).
In this paper had been studied the characterization of the nanocatalyst (NiO) Mesh electrodes. For fuel cell. The catalyst is prepared and also the electrodes The structural were studied through the analysis of X-ray diffraction of the prepared nanocatalyst for determining the yielding phase and atomic force microscope to identify the roughness of prepared catalyst surface, Use has been nanocatalyst led to optimization of cell voltage, current densities & power for a fuel cell.