The agriculture around the world faced many difficulties and the important was to reduce inputs of chemical fertilizers and pesticides and increase the total yield specially with the continuous grow of populations numbers at the world expected to reach more than 9 billion by 2050. In other hand there are other problems which make the challenges bigger such as wars, biotic and abiotic stress, and diseases. The scientists tried to find solutions by using Nano-fertilization which consider a modern way to quickly grow up the yield and decrease use the chemicals. The use of nanotechnology may be destructive on human and the environment due to fast accumulation in the tissues of alive bodies which obligate the researchers to find the correct method and doses of Nano fertilizers for the different plants beside the attempt to use fertilizer environment friendly with high efficiency on growth and yield. Many products of nanotechnology were used in agriculture as fertilizers, pesticides, and water purification and while these products use expand, we need to make our steps fast to be careful of the advantages use which may appears in the future on human health and his environments. In Iraq there is many of challenges faced plant production such as wars, migrations, pollutions, and salinity so a lot of farmers found that Nano-fertilizers are a good technique to reduce their loss while there are many studies cautioned of bad use of nanomaterials which its dangerous is bigger than chemicals due its ability to permeability and accumulations.
In this work, laboratory experiments were carried out to verify direct contact membrane distillation system’s performance in highly saline water desalination. The study included the investigation of various operating conditions, like feed flow rate, temperature and concentration of NaCl solution and their impact on the permeation flux were discussed. 16 cm2 of a flat sheet membrane module with commercial poly-tetra-fluoroethylene (PTFE) membrane, which has 0.22 μm pore size, 96 µm thickness and 78% average porosity, was used. A high salt rejection factor was obtained greater than 99.9%, and the permeation flux up to 17.27 kg/m2.h was achieved at 65°C for hot feed side and 20°C for cold side stream.
This investigation aimed to explain the mechanism of MFCA by applying this method on air-cooled engine factory which was suffering from high production cost. The results of this study revealed that MFCA is a useful tool to identify losses and inefficiencies of the production process. It is found that the factory is suffering from high losses due to material energy and system losses. In conclusion, it is calculated that system losses are the highest among all the losses due to inefficient use of available production capacity.
The present study aims to remove nickel ions from solution of the simulated wastewater using (Laminaria saccharina) algae as a biosorbent material. Effects of experimental parameters such as temperature at (20 - 40) C⁰, pH at (3 - 7) at time (10 - 120) min on the removal efficiency were studied.
Box-Wilson method was adopted to obtain a relationship between the above three experimental parameters and removal percentage of the nickel ions. The experimental data were fitted to second order polynomial model, and the optimum conditions for the removal process of nickel ions were obtained.
The highest removal percentage of nickel ions obtained was 98.8 %, at best operating conditions (Temperature 35 C⁰, pH 5 and Time 10 min).
The performance of a batch undivided electrochemical reactor with a rotating cylinder electrode of woven-wire (60 mesh size), stainless steel 316, is examined for the removal of copper from synthetic solution of o.5 M sodium chloride containing 125 ppm at pH ≈ 3.5. The effect of total applied current, rotation speed on the figures of merit of the reactor is analyzed. For an applied current of 300 mA at 100 rpm, the copper concentration decreased from 125 to mg l-1 after 60 min of electrolysis with a specific energy consumption of 1.75 kWh kg-1 and a normalized space velocity of 1.62 h-1. The change in concentration was higher when the total applied currents were increased because of the turbulence
... Show MoreIn cognitive radio system, the spectrum sensing has a major challenge in needing a sensing method, which has a high detection capability with reduced complexity. In this paper, a low-cost hybrid spectrum sensing method with an optimized detection performance based on energy and cyclostationary detectors is proposed. The method is designed such that at high signal-to-noise ratio SNR values, energy detector is used alone to perform the detection. At low SNR values, cyclostationary detector with reduced complexity may be employed to support the accurate detection. The complexity reduction is done in two ways: through reducing the number of sensing samples used in the autocorrelation process in the time domain and through using the Slid
... Show MoreMobile phones are widely used nowadays, for different application such as wireless control and monitoring due to its availability and ease of use. The implemented system is based on "global system mobile (GSM)" network by using "short message service (SMS)". The design mainly contains a GSM modem and interfacing unit circuit with microcontrollers. This system could control up to eight different electrical devices such as light, Air conditioner, washing machine and many more applications which needed in daily life in different area (House, Office, or factory, etc.). The control is done by sending a specific SMS messages from traditional or smart phone. The controlling devices are restricted to a pre-defined phone number and are set in the so
... Show MoreThe main purpose of this work is the construction of an optical parametric amplifier (OPA) to generate a 629 nm pulsed laser. KTP nonlinear crystals were used for both parametric oscillation and amplification. A singly resonant parametric oscillator (OPO) is constructed to generate a signal of 1.54 μm and idler of 3.4 μm when the OPO system is pumped by 1.064 μm Q – switched Nd: YAG laser. The signal was then mixed with the pumping beam in OPA system to form the wanted wavelength. The obtained optical conversion efficiency was 60%.