Matching between wind site characteristics and wind turbine characteristics for three selected sites in Iraq was carried out. Site-turbine matching for potential wind power application in Iraq has not yet been well reported on. Thus, in this study, five years’ wind speed data for sites located in Baghdad (33.34N, 44.40E), Nasiriyah (31.05N, 46.25E), and Basrah (30.50N, 47.78E) were collected. A full wind energy analysis based on the measured data, Weibull distribution function, and wind turbine characteristics was made. A code developed using MATLAB software was used to analyse the wind energy and wind turbines models. The primary objective was to achieve a standard wind turbine-site matching based on the capacity factor. Another matching based on the power density ratio of wind site and wind turbines was used to assure that the initially-selected turbines operate at the most-efficient capacity factor. Results from the wind-energy analysis revealed that the Basrah site ranked the highest with wind class (5-Excellent) according to the international system of wind classification. Results from the wind turbine-site matching showed that Wikov W2000-93 was the best-matched wind turbine model for the Basrah site from the viewpoint of capacity factor. The results also showed that Nordex N90 Beta was the best-matched wind turbine model from the perspective of energy capture.
The reaction of LAs-Cl8 : [ (2,2- (1-(3,4-bis(carboxylicdichloromethoxy)-5-oxo-2,5- dihydrofuran-2-yl)ethane – 1,2-diyl)bis(2,2-dichloroacetic acid)]with sodium azide in ethanol with drops of distilled water has been investigated . The new product L-AZ :(3Z ,5Z,8Z)-2- azido-8-[azido(3Z,5Z)-2-azido-2,6-bis(azidocarbonyl)-8,9-dihydro-2H-1,7-dioxa-3,4,5- triazonine-9-yl]methyl]-9-[(1-azido-1-hydroxy)methyl]-2H-1,7-dioxa-3,4,5-triazonine – 2,6 – dicarbonylazide was isolated and characterized by elemental analysis (C.H.N) , 1H-NMR , Mass spectrum and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the L-AZ withM+n: [ ( VO(II) , Cr(III) ,Mn(II) , Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) and Hg(II)] has been i
... Show MoreIn this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show More