Preferred Language
Articles
/
iWGCLZkBdMdGkNqjQCPx
A careful study of the effect of the infectious diseases and refuge on the dynamical behavior of prey-scavenger modeling
...Show More Authors

In this paper, the dynamics of scavenger species predation of both susceptible and infected prey at different rates with prey refuge is mathematically proposed and studied. It is supposed that the disease was spread by direct contact between susceptible prey with infected prey described by Holling type-II infection function. The existence, uniqueness, and boundedness of the solution are investigated. The stability constraints of all equilibrium points are determined. In addition to establishing some sufficient conditions for global stability of them by using suitable Lyapunov functions. Finally, these theoretical results are shown and verified with numerical simulations.

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Dec 14 2023
Journal Name
Malaysian Journal Of Mathematical Sciences
The Effect of Alternative Resource and Refuge on the Dynamical Behavior of Food Chain Model
...Show More Authors

This article examines and proposes a dietary chain model with a prey shelter and alternative food sources. It is anticipated that mid-predators' availability is positively correlated with the number of refuges. The solution's existence and exclusivity are examined. It is established that the solution is bounded. It is explored whether all potential equilibrium points exist and are locally stable. The Lyapunov approach is used to investigate the equilibrium points' worldwide stability. Utilizing a Sotomayor theorem application, local bifurcation is studied. Numerical simulation is used to better comprehend the dynamics of the model and define the control set of parameters.

View Publication
Scopus (7)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
On The Dynamical Behavior of a Prey-Predator Model With The Effect of Periodic Forcing
...Show More Authors

The dynamical behavior of a two-dimensional continuous time dynamical system describing by a prey predator model is investigated. By means of constructing suitable Lyapunov functional, sufficient condition is derived for the global asymptotic stability of the positive equilibrium of the system. The Hopf bifurcation analysis is carried out. The numerical simulations are used to study the effect of periodic forcing in two different parameters. The results of simulations show that the model under the effects of periodic forcing in two different parameters, with or without phase difference, could exhibit chaotic dynamics for realistic and biologically feasible parametric values.

View Publication Preview PDF
Publication Date
Tue Jan 10 2012
Journal Name
Iraqi Journal Of Science
THE IMPACT OF DISEASE AND HARVESTING ON THE DYNAMICAL BEHAVIOR OF PREY PREDATOR MODEL
...Show More Authors

In this paper, a harvested prey-predator model involving infectious disease in prey is considered. The existence, uniqueness and boundedness of the solution are discussed. The stability analysis of all possible equilibrium points are carried out. The persistence conditions of the system are established. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that the existence of disease and harvesting can give rise to multiple attractors, including chaos, with variations in critical parameters.

View Publication Preview PDF
Publication Date
Fri Sep 06 2024
Journal Name
Brazilian Journal Of Physics
Effect of the Fear Factor and Prey Refuge in an Asymmetric Predator–Prey Model
...Show More Authors

This study investigates the influence of fear, refuge, and migration in a predator–prey model, where the interactions between the species follow an asymmetric function response. In contrast to some other findings, we propose that prey develop an anti-predator response in response to a concentration of predators, which in turn increases the fear factor of the predators. The conditions under which all ecologically meaningful equilibrium points exist are discussed in detail. The local and global dynamics of the model are determined at all equilibrium points. The model admits several interesting results by changing the rate of fear of predators and predator aggregate sensitivity. Numerical simulations have been performed to verify our theoret

... Show More
View Publication
Scopus (7)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Physics: Conference Series
The Fear Effect on a Food Chain Prey-Predator Model Incorporating a Prey Refuge and Harvesting
...Show More Authors
Abstract<p>In this paper, we investigate the impact of fear on a food chain mathematical model with prey refuge and harvesting. The prey species reproduces by to the law of logistic growth. The model is adapted from version of the Holling type-II prey-first predator and Lotka-Volterra for first predator-second predator model. The conditions, have been examined that assurance the existence of equilibrium points. Uniqueness and boundedness of the solution of the system have been achieve. The local and global dynamical behaviors are discussed and analyzed. In the end, numerical simulations are confirmed the theoretical results that obtained and to display the effectiveness of varying each parameter</p> ... Show More
View Publication
Scopus (15)
Crossref (9)
Scopus Crossref
Publication Date
Sat Oct 15 2022
Journal Name
Communications In Mathematical Biology And Neuroscience
Modeling and analysis of a prey-predator system incorporating fear, predator-dependent refuge, and cannibalism
...Show More Authors

Using a mathematical model to simulate the interaction between prey and predator was suggested and researched. It was believed that the model would entail predator cannibalism and constant refuge in the predator population, while the prey population would experience predation fear and need for a predator-dependent refuge. This study aimed to examine the proposed model's long-term behavior and explore the effects of the model's key parameters. The model's solution was demonstrated to be limited and positive. All potential equilibrium points' existence and stability were tested. When possible, the appropriate Lyapunov function was utilized to demonstrate the equilibrium points' overall stability. The system's persistence requirements were spe

... Show More
View Publication Preview PDF
Scopus (7)
Scopus Clarivate Crossref
Publication Date
Wed Aug 10 2022
Journal Name
Mathematics
Modeling and Analysis of the Influence of Fear on the Harvested Modified Leslie–Gower Model Involving Nonlinear Prey Refuge
...Show More Authors

Understanding the effects of fear, quadratic fixed effort harvesting, and predator-dependent refuge are essential topics in ecology. Accordingly, a modified Leslie–Gower prey–predator model incorporating these biological factors is mathematically modeled using the Beddington–DeAngelis type of functional response to describe the predation processes. The model’s qualitative features are investigated, including local equilibria stability, permanence, and global stability. Bifurcation analysis is carried out on the temporal model to identify local bifurcations such as transcritical, saddle-node, and Hopf bifurcation. A comprehensive numerical inquiry is carried out using MATLAB to verify the obtained theoretical findings and und

... Show More
View Publication
Scopus (21)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Wed Apr 20 2011
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Chaos in a harvested prey-predator model with infectious disease in the prey
...Show More Authors

A harvested prey-predator model with infectious disease in preyis investigated. It is assumed that the predator feeds on the infected prey only according to Holling type-II functional response. The existence, uniqueness and boundedness of the solution of the model are investigated. The local stability analysis of the harvested prey-predator model is carried out. The necessary and sufficient conditions for the persistence of the model are also obtained. Finally, the global dynamics of this model is investigated analytically as well as numerically. It is observed that, the model have different types of dynamical behaviors including chaos.

View Publication Preview PDF
Publication Date
Fri Jun 20 2025
Journal Name
Baghdad Science Journal
The Role of Fear and Predator Dependent Refuge on a Stage Structure Prey-Predator System
...Show More Authors

The present paper investigates the role of fear and predator dependent refuge in the prey-predator system. The system describes the interaction between prey and a stage structure of predator that incorporates Holling II functional response. The predator splits into two compartments immature (juvenile) and mature (adult). The mature predators can hunt and reproduce but this capability is not found in the immature predators, the immature depend on their parents. The growth rate of prey decreases due to the existence of mature predators. The existence, uniqueness, and boundedness of the solution of the system are investigated. Three equilibrium points of the system are determined. The local stability of the system is studied. The global stabil

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Mar 26 2019
Journal Name
International Journal Of Mathematics And Mathematical Sciences
Stability and Bifurcation of a Prey-Predator-Scavenger Model in the Existence of Toxicant and Harvesting
...Show More Authors

In this paper a prey-predator-scavenger food web model is proposed and studied. It is assumed that the model considered the effect of harvesting and all the species are infected by some toxicants released by some other species. The stability analysis of all possible equilibrium points is discussed. The persistence conditions of the system are established. The occurrence of local bifurcation around the equilibrium points is investigated. Numerical simulation is used and the obtained solution curves are drawn to illustrate the results of the model. Finally, the nonexistence of periodic dynamics is discussed analytically as well as numerically.

Scopus (35)
Crossref (10)
Scopus Clarivate Crossref