Background: The SARS-CoV-2 virus causes COVID-19, a respiratory syndrome. It causes inflammation and damages several organs in the body. miRNAs play a role in regulating the infection resulting from SARS-CoV-2. MicroRNA-155, a kind of microRNA linked to viral defences, can affect the immune responses during COVID-19. Objectives: Examination of the involvement of microRNA-155 in the development and severity of COVID-19, as well as finding the correlation between microRNA-155 and viral load (copies/mL) in severe cases of the disease. Materials and Method: A case-control research study was performed between October 2022 and June 2023. It included a cohort of 120 hospitalised individuals with severe cases of COVID-19, together with 115 individuals with mild cases of COVID-19 and apparently healthy individuals. A real-time PCR procedure was applied to determine microRNA-155 expression in the studied groups and the viral load (copies/mL) in severe cases of the disease. Results: MicroRNA-155 was expressed in severe cases threefold more than its expression in mild cases of COVID-19 and healthy individuals. Also, a strong association was demonstrated between microRNA-155 and viral load (copies/mL) in severe COVID-19. Conclusion: MicroRNA-155 could be used as a biomarker for severe COVID-19 conditions and could have a role in disease severity and infectious particles of the virus. Since it is positively correlated with viral load (copies/mL) in severe cases of the disease
One of the most serious health disasters in recent memory is the COVID-19 epidemic. Several restriction rules have been forced to reduce the virus spreading. Masks that are properly fitted can help prevent the virus from spreading from the person wearing the mask to others. Masks alone will not protect against COVID-19; they must be used in conjunction with physical separation and avoidance of direct contact. The fast spread of this disease, as well as the growing usage of prevention methods, underscore the critical need for a shift in biometrics-based authentication schemes. Biometrics systems are affected differently depending on whether are used as one of the preventive techniques based on COVID-19 pandemic rules. This study provides an
... Show MoreBackground: Coronavirus pandemic (COVID-19) has enormously affected various healthcare services including the one of community pharmacy. The ramifications of these effects on Iraqi community pharmacies and the measures they have taken to tackle the spread of COVID-19 is yet to be explored. In this cross sectional survey, infection control measures by community pharmacies in Sulaimani city/Iraq has been investigated.
Methods: Community pharmacists were randomly allocated to participate in a cross-sectional survey via visiting their pharmacies and filling up the questionnaire form.
Results and discussion:
... Show MoreThe current research aims to analyze the role of participatory budgeting in improving performance, especially during crises such as the Covid-19 crisis. The research used the descriptive analytical method to reach the results by distributing 100 questionnaires to a number of employees in Iraqi joint stock companies and at multiple administrative levels. The research came to several important conclusions, the most important of which is that the bottom-up approach to budgeting produces more achievable budgets than the top-down approach, which is imposed on the company by senior management with much less employee participation. Additionally, there is a better information flow from the lower levels of the organization to the upper management
... Show MoreNowadays, the use of natural bio-products in pharmaceuticals is gaining popularity as safe alternatives to chemicals and synthetic drugs. Algal products are offering a pure, healthy and sustainable choice for pharmaceutical applications. Algae are photosynthetic microorganisms that can survive in different environmental conditions. Algae have many outstanding properties that make them excellent candidate for use in therapeutics. Algae grow in fresh and marine waters and produce in their cells a wide range of biologically active chemical compounds. These bioactive compounds are offering a great source of highly economic bio-products. The prese
... Show More
With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show MoreWorldwide, there is an increased reliance on COVID-19-related health messages to curb the COVID-19 outbreak. Therefore, it is vital to provide a well-prepared and authentic translation of English-language messages to reach culturally and linguistically diverse audiences. However, few studies, if any, focus on how non-English-speaking readers receive and linguistically accept the lexical choices in the messages translated into their language. The present study tested a sample of translated Arabic COVID-19-related texts that were obtained from the World Health Organization and Australian New South Wales Health websites. This study investigated to that extent Arabic readers would receive translated COVID-19 health messages and whether the t
... Show MoreThe aim of our study is to solve a nonlinear epidemic model, which is the COVID-19 epidemic model in Iraq, through the application of initial value problems in the current study. The model has been presented as a system of ordinary differential equations that has parameters that change with time. Two numerical simulation methods are proposed to solve this model as suitable methods for solving systems whose coefficients change over time. These methods are the Mean Monte Carlo Runge-Kutta method (MMC_RK) and the Mean Latin Hypercube Runge-Kutta method (MLH_RK). The results of numerical simulation methods are compared with the results of the numerical Runge-Kutta 4th order method (RK4) from 2021 to 2025 using the absolute error, which prove
... Show More