Synthesis, Characterization And Biological Evaluation of New Schiff Bases MixedLigand Metal Complexes of Some Drug Substances
Four Co(II), (C1); Ni(II), (C2); Cu(II), (C3) and Zn(II), (C4) chelates have been synthesized with 1-(4-((2-amino- 5‑methoxy)diazenyl)phenyl)ethanone ligand (L). The produced compounds have been identified by using spectral studies, elemental analysis (C.H.N.O), conductivity and magnetic properties. The produced metal chelates were studied using molar ratio as well as sequences contrast types. Rate of concentration (1 ×10 4 - 3 ×10 4 Mol/L) sequence Beer’s law. Compound solutions have been noticed height molar absorptivity. The free of ligand and metal chelates had been applied as disperse dyes on cotton fabrics. Furthermore, the antibacterial activity of the produced compounds against various bacteria had been investigated. F
... Show MoreAbstract: Mixed ligand Mn(II), Co(II), Ni(II), Cu (II), Zn(II), and Cd(II) complexes with (TMAP) Schiff base ligand and (8HQ) have been composition and analyzed. Diagnosis by, melting point, solubility, Electronic, mass and IR-spectroscopic studies, conductivity elemental, thermoanalytical analysis displayed the forming of mononuclear complexes. Spectral studies results suggest an octahedral system or the metal (II) mixed complexes. The detainments of molar conductance of the mixed complexes in DMF coincide to electrolytic nature of the mixed complexes, consequently, these complexes could be subedited as [M(TMAP)(8Q)(H2O)]nX.yH2O (M=Co(II) and Cu(II) complexes(where n = 1, y = 0 ); [M(TMAP)(8Q)(H2O)]nX.yH2O (M = (where n = 1, y = 1 for Ni(
... Show MoreA new series of metal ions complexes of VO(II), Cr(III), Mn(II), Zn(II), Cd(II) and Ce(III) have been synthesized from the Schiff bases (4-chlorobenzylidene)-urea amine (L1) and (4-bromobenzylidene)-urea amine (L2). Structural features were obtained from their elemental microanalyses, magnetic susceptibility, molar conductance, FT-IR, UV–Vis, LC-Mass and 1HNMR spectral studies. The UV–Vis, magnetic susceptibility and molar conductance data of the complexes suggest a tetrahedral geometry around the central metal ion except, VOII complexes that has square pyramidal geometry, but CrIII and CeIII octahedral geometry. The biological activity for the ligand (L1) and its Vanadium and Cadmium complexes were studied. Structural geometries of com
... Show MoreNew metal complexes of the ligand 4-[5-(2-hydoxy-phenyl)-[1,3,4- oxadiazol -2-ylimino methyl]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (L) with the metal ions Co(II), Ni(II), Cu(II) and Zn(II) were prepared in alcoholic medium. The Schiff base was synthesized through condensate of [4-antipyrincarboxaldehyde] with[2-amino-5-(2-hydroxy-phenyl-1,3,4- oxadiazol] in alcoholic medium . Two tetradentate Schiff base ligand were used for complexation upon two metal ions of Co2+, Ni2+, Cu2+ and Zn2+ as dineucler formula M2L2.4H2O. The metal complexes were characterized by FTIR Spectroscopy, electronic Spectroscopy, elemental analysis, magnetic susceptidbility measurements, and also the ligand was characterized by 1H-NMR spectra, and m
... Show MoreSYNTHESIS, AND ANTIOXIDANT ACTIVITY STUDIES OF BINUCLEAR COMPLEXES CONTAINING SCHIFF BASE LIGAND
Heterogeneous organic compounds play an important role in our daily life as they contribute in many medical and industrial fields and are in continuous development as a result of the preparation of new derivatives with different properties. From this premise, the goal of this work appears, which is preparation of (four, five, six, and seven) membered ring systems derived from furfural, by its reaction with different aromatic aldehydes, and record their antioxidant activity by using free radical scavenging method of DPPH radicals. The new ring systems are synthesized by reacting the prepared Schiff-bases with different ring closure agents (chloroacetyl chloride, mercaptoaceticacid, anthranilic acid, and phthalic anhydride), the prep
... Show MoreThis work includs synthesis of several Schiff bases by condensation of 6- methoxy – 2- amino benzothiazole with some aldehydes and ketones (2- hydroxyl benzaldehyde, 4- hydroxyl benzaldehyde, 4- N,N –dimethy amino acetophenone, benzophenone) to abtain schiff bases (1-5). These schiff bases were found to react with phthalate anhydride to give oxazepine derivatives (6-10) that were reacted with primary aromatic amines to give Diazepine derivatives (11-15). Besides, we prepared new tetrazole derivatives (16-20) from the reaction of the prepared Schiff bases with sodium azide in the prepared compounds that were characterized by physical properties, FT-IR and some of the 1H-NMR and 13C –NMR spectroscopy.