Trajectory tracking and vibration suppression are essential objectives in a flexible joint manipulator control. The flexible joint manipulator is an under-actuated system, in which the number of control actions is less than the degree of freedom to be controlled. It is very challenging to control the underactuated nonlinear system with two degree of freedom. This paper presents a hierarchical sliding mode control (HSMC) for a rotary flexible joint manipulator (RFJM). Firstly, the rotary flexible joint manipulator is modeled by two subsystems. Secondly, the sliding surfaces for both subsystems are constructed. Finally, the control action is designed based on the Lyapunov function. Computer simulation results demonstrate the effectiveness of the proposed control. The comparative study shows the proposed method has superior performance than the conventional sliding mode control by achieving the controlled objectives such as a satisfactory tracking performance and an acceptable vibration reduction for the single link flexible joint robot manipulator.
Abstract-Servo motors are important parts of industry automation due to their several advantages such as cost and energy efficiency, simple design, and flexibility. However, the position control of the servo motor is a difficult task because of different factors of external disturbances, nonlinearities, and uncertainties. To tackle these challenges, an adaptive integral sliding mode control (AISMC) is proposed, in which a novel bidirectional adaptive law is constructed to reduce the control chattering. The proposed control has three steps to be designed. Firstly, a full-order integral sliding manifold is designed to improve the servo motor position tracking performance, in which the reaching phase is eliminated to achieve the invariance of
... Show MoreIn this article, a continuous terminal sliding mode control algorithm is proposed for servo motor systems. A novel full-order terminal sliding mode surface is proposed based on the bilimit homogeneous property, such that the sliding motion is finite-time stable independent of the system’s initial condition. A new continuous terminal sliding mode control algorithm is proposed to guarantee that the system states reach the sliding surface in finitetime. Not only the robustness is guaranteed by the proposed controller but also the continuity makes the control algorithm more suitable for the servo mechanical systems. Finally, a numerical example is presented to depict the advantages of the proposed control algorithm. An application in the rota
... Show MoreIn this paper, a robust adaptive sliding mode controller is designed for a mobile platform trajectory tracking. The mobile platform is an example of a nonholonomic mechanical system. The presence of holonomic constraints reduces the number of degree of freedom that represents the system model, while the nonholonomic constraints reduce the differentiable degree of freedom. The mathematical model was derived here for the mobile platform, considering the existence of one holonomic and two nonholonomic constraints imposed on system dynamics. The partial feedback linearization method was used to get the input-output relation, where the output is the error functions between the position of a certain point on the platform
... Show MoreThe goal of this paper is to design a robust controller for controlling a pendulum
system. The control of nonlinear systems is a common problem that is facing the researchers in control systems design. The Sliding Mode Controller (SMC) is the best solution for controlling a nonlinear system. The classical SMC consists from two phases. The first phase is the reaching phase and the second is the sliding phase. The SMC suffers from the chattering phenomenon which is considered as a severe problem and undesirable property. It is a zigzag motion along the switching surface. In this paper, the chattering is reduced by using a saturation function instead of sign function. In spite of SMC is a good method for controlling a nonlinear system b
Proxy-based sliding mode control PSMC is an improved version of PID control that combines the features of PID and sliding mode control SMC with continuously dynamic behaviour. However, the stability of the control architecture maybe not well addressed. Consequently, this work is focused on modification of the original version of the proxy-based sliding mode control PSMC by adding an adaptive approximation compensator AAC term for vibration control of an Euler-Bernoulli beam. The role of the AAC term is to compensate for unmodelled dynamics and make the stability proof more easily. The stability of the proposed control algorithm is systematically proved using Lyapunov theory. Multi-modal equation of motion is derived using the Galerkin metho
... Show MoreThe temperature control process of electric heating furnace (EHF) systems is a quite difficult and changeable task owing to non-linearity, time delay, time-varying parameters, and the harsh environment of the furnace. In this paper, a robust temperature control scheme for an EHF system is developed using an adaptive active disturbance rejection control (AADRC) technique with a continuous sliding-mode based component. First, a comprehensive dynamic model is established by using convection laws, in which the EHF systems can be characterized as an uncertain second order system. Second, an adaptive extended state observer (AESO) is utilized to estimate the states of the EHF system and total disturbances, in which the observer gains are updated
... Show MoreZiegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventio
... Show MoreThis paper proposes a new structure for a Fractional Order Sliding Mode Controller (FOSMC) to control a Twin Rotor Aerodynamic System (TRAS). The new structure is composed by defining two 3-dimensional sliding mode surfaces for the TRAS model and introducing fractional order derivative integral in the state variables as well as in the control action. The parameters of the controller are determined so as to minimize the Integral of Time multiplied by Absolute Error (ITAE) performance index. Through comparison, this controller outperforms its integer counterpart in many specifications, such as reducing the delay time, rise time, percentage overshoot, settling time, time to reach the sliding surface, and amplitude of chattering in control inpu
... Show More