Due to the urgent need to develop technologies for continuous glucose monitoring in diabetes individuals, poten tial research has been applied by invoking the microwave tech niques. Therefore, this work presents a novel technique based on a single port microwave circuit, antenna structure, based on Metamaterial (MTM) transmission line defected patch for sensing the blood glucose level in noninvasive process. For that, the proposed antenna is invoked to measure the blood glu cose through the field leakages penetrated to the human blood through the skin. The proposed sensor is constructed from a closed loop connected to an interdigital capacitor to magnify the electric field fringing at the patch center. The proposed an tenna sensor is found to operate excellently at the first mode, 0.6GHz, with S11 impedance matching less than -10dB. The proposed sensor performance is tested experimentally with 15 cases, different patients, through measuring the change in the S11 spectra after direct touching to the sensor a finger print of a patient. The proposed sensor is found to be effectively very efficient detector for blood glucose variation with a low manu facturing cost when printed on an FR-4 substrate. The experi mental measurements are analyzed mathematically to obtain the calibration equation of the sensor from the curve fitting. Finally, the theoretical and the experimental results are found to be agreed very well with a percentage of error less than 10%.
CO2 Gas is considered one of the unfavorable gases and it causes great air pollution. It’s possible to decrease this pollution by injecting gas in the oil reservoirs to provide a good miscibility and to increase the oil recovery factor. MMP was estimated by Peng Robinson equation of state (PR-EOS). South Rumila-63 (SULIAY) is involved for which the miscible displacement by is achievable based on the standard criteria for success EOR processes. A PVT report was available for the reservoir under study. It contains deferential liberation (DL) and constant composition expansion (CCE) tests. PVTi software is one of the (Eclipse V.2010) software’s packages, it has been used to achieve the goal.
... Show MoreFree Space Optical (FSO) technology offers highly directional, high bandwidth communication channels. This technology can provide fiber-like data rate over short distances. In order to improve security associated with data transmission in FSO networks, a secure communication method based on chaotic technique is presented. In this paper, we have turned our focus on a specific class of piece wise linear one-dimensional chaotic maps. Simulation results indicate that this approach has the advantage of possessing excellent correlation property. In this paper we examine the security vulnerabilities of single FSO links and propose a solution to this problem by implementing the chaotic signal generator “reconfigurable tent map”. As synchronizat
... Show MoreSuccessfully, theoretical equations were established to study the effect of solvent polarities on the electron current density, fill factor and efficiencies of Tris (8-hydroxy) quinoline aluminum (Alq3)/ ZnO solar cells. Three different solvents studied in this theoretical works, namely 1-propanol, ethanol and acetonitrile. The quantum model of transition energy in donor–acceptor system was used to derive a current formula. After that, it has been used to calculate the fill factor and the efficiency of the solar cell. The calculations indicated that the efficiency of the solar cell is influenced by the polarity of solvents. The best performance was for the solar cell based on acetonitrile as a solvent with electron current density of (5.0
... Show MoreThis research examines the impact of cornering on the aerodynamic forces and stability of a Nissan Versa (Almera) passenger sedan car by introducing novel modifications. These modifications included single inverted wings with end plates as a front spoiler, double‐element inverted wings with end plates as a rear spoiler, and incorporating the ground as a diffuser under the car trunk. The goal is to enhance the performance and stability of conventional passenger cars. To ensure the accuracy of the numerical data, the study utilized multiple methodologies to model the turbulence model, ultimately selecting the most suitable option. This involved comparing numerical data with wind tunnel experimental d
أن التطور العلمي الحاصل فيما يخص المجال الرياضي أرسى آفاق جديدة لمواكبة التطور الكبير في مجا ل الألعاب والفعاليات الرياضية المختلفة ,و أن تحقيق النتائج الجيدة في فعاليات العاب القوى بشكل عام والثلاثية بشكل خاص في التدريب الرياضي يتطلب إتباع الأساليب العلمية الدقيقة والموضوعية بشكل سليم ومخطط له،فضلا عنة تطبيق نظريات ومنحى جديد لمواكبة الاتجاهات الحديثة في تحقيق النتائج الجيدة للوصول إلى المستويات العالية
... Show MorePeer-Reviewed Journal
Abstract
Research aims : The aim of the research is to evaluate the reality of the inspection teams' work in the health institutions belonging to Dhi-Qar health office .
Purpose: This research seeks to present a point of view based on knowing the extent of health service quality in Dhi-Qar governorate and discover the role of the inspection teams in enhancing the health service.
Design / Methodology/ Approach: The experimental method has been used and the questionnaire has also been used to collect data in order to develop a reliable and correct measurement model for the research's variables . The research's hypotheses have been tested through using some statistical treat
... Show MoreA simple setup of random number generator is proposed. The random number generation is based on the shot-noise fluctuations in a p-i-n photodiode. These fluctuations that are defined as shot noise are based on a stationary random process whose statistical properties reflect Poisson statistics associated with photon streams. It has its origin in the quantum nature of light and it is related to vacuum fluctuations. Two photodiodes were used and their shot noise fluctuations were subtracted. The difference was applied to a comparator to obtain the random sequence.
Polarization manipulation elements operating at visible wavelengths represent a critical component of quantum communication sub-systems, equivalent to their telecom wavelength counterparts. The method proposed involves rotating the optic axis of the polarized input light by an angle of 45 degree, thereby converting the fundamental transverse electric (TE0) mode to the fundamental transverse magnetic (TM0) mode. This paper outlines an integrated gallium phosphide-waveguide polarization rotator, which relies on the rotation of a horizontal slot by 45 degree at a wavelength of 700 nm. This will ultimately lead to the conception of a mode hybridization phenomenon in the waveguide. The simulation results demonstrate a polarization co
... Show MorePolarization manipulation elements operating at visible wavelengths represent a critical component of quantum communication sub-systems, equivalent to their telecom wavelength counterparts. The method proposed involves rotating the optic axis of the polarized input light by an angle of 45 degree, thereby converting the fundamental transverse electric (TE0) mode to the fundamental transverse magnetic (TM0) mode. This paper outlines an integrated gallium phosphide-waveguide polarization rotator, which relies on the rotation of a horizontal slot by 45 degree at a wavelength of 700 nm. This will ultimately lead to the conception of a mode hybridization phenomeno