Calcifying epithelial odontogenic tumour (CEOT) is a benign odontogenic neoplasm of epithelial origin that secretes an amyloid‐like protein tending towards calcification. This study aims to describe a case series from Iraq of one of the rarest odontogenic tumours.
Clinical and histopathological analysis of Calcifying epithelial odontogenic tumour cases that are archived at the oral pathology laboratory of the college of dentistry (Baghdad University) from 2000 to 2019.
Six cases of CEOT were regi
Abstract:
Most of the studies on this subject, small industrial projects, by researchers and scholars in the economic field show the great and increasing importance of doing this kind of projects, the extent of which can be determined by the contribution of these projects to indicators and macroeconomic and sectorial variables. So this research aims to show the extent of the economic contribution of projects in selected international experiences and in the Iraqi economy. As international experiences have provided the opportunity for the progress and growth of small projects in their economies, which led to an increase in the contribution of these projects in the recruitment of economically active manpower, in added
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreBackground: Few updated retrospective histopathological-based studies in Iraq evaluate a comprehensive spectrum of oro-maxillofacial lesions. Also, there was a need for a systematic way of categorizing the diseases and reporting results in codes according to the WHO classification that helps occupational health professionals in the clinical-epidemiological approach.
Objectives: to establish an electronic archiving database according to the ICD-10 that encompasses oro-maxillofacial lesions in Sulaimani city for the last 12 years, then to study the prevalence trend and correlation with clinicopathological parameters.
Subjects and Methods: A descri
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreThis study was done to compare the morphometric parameters of placentas in well controlled patients with preeclampsia, diabetes, and preeclampsia-diabetes with that of normal uncomplicated placentas. Patients & Methods: A total of Twenty four placentas were freshly collected. Six placentas for control group and eighteen placentas for complicated group (preeclamptic-diabetic and preeclamptic--diabetic subgroups). The placentas were grossly examined (shape, number of cotyledons, weight, and thickness). After suitable fixation, tissue processing and sectioning, the sections were stained by hematoxylin and eosin to study the general morphology and morphometry of the following parameters: number of terminal villi, number of syncytial knots, numb
... Show MoreBackground: Placenta is a chief cause of maternal and perinatal mortality and significant factor in fetal growth retardation. It undergoes different variations in weight, volume, structure, shape and function continuously throughout the gestation tosupport the prenatal life. Cautious examination of placenta can give information which can be useful in the management of complications in mother and the newborn. Objective: The present work has been attempted towards determination of the morphological ( macroscopic and microscopic) parameters of human full-term placentae and their relation with different parity and age group of mothers. Patients and Methods: A whole of 40 placentae were recently collected.They were divided into four groups
... Show More