Preferred Language
Articles
/
iRf1UZEBVTCNdQwCl5So
A New Face Swap Detection Technique for Digital Images
...Show More Authors

Scopus
View Publication
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Improving Detection Rate of the Network Intrusion Detection System Based on Wrapper Feature Selection Approach
...Show More Authors

Regarding the security of computer systems, the intrusion detection systems (IDSs) are essential components for the detection of attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in real time. A major drawback of the IDS is their inability to provide adequate sensitivity and accuracy, coupled with their failure in processing enormous data. The issue of classification time is greatly reduced with the IDS through feature selection. In this paper, a new feature selection algorithm based on Firefly Algorithm (FA) is proposed. In addition, the naïve bayesian classifier is used to discriminate attack behaviour from normal behaviour in the network tra

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 01 2010
Journal Name
Basrah Journal Of Science
Hiding Three Images at one image by Using Wavelet Coefficients at Color Image
...Show More Authors

Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Study of Land Cover Changes of Baghdad Using Multi-Temporal Landsat Satellite Images
...Show More Authors

The main goal of this work is study the land cover changes for "Baghdad city" over a period of (30) years using multi-temporal Landsat satellite images (TM, ETM+ and OLI) acquired in 1984, 2000, and 2015 respectively. In this work, The principal components analysis transform has been utilized as multi operators, (i.e. enhancement, compressor, and temporal change detector). Since most of the image band's information are presented in the first PCs image. Then, the PC1 image for all three years is partitioned into variable sized blocks using quad tree technique. Several different methods of classification have been used to classify Landsat satellite images; these are, proposed method singular value decomposition (SVD) using Visual Basic sof

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Calculating land surface temperature of South Baghdad by the using Landsat 8 images
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Communications In Computer And Information Science
The Use of Biorthogonal Wavelet, 2D Polynomial and Quadtree to Compress Color Images
...Show More Authors

In this paper, a compression system with high synthetic architect is introduced, it is based on wavelet transform, polynomial representation and quadtree coding. The bio-orthogonal (tap 9/7) wavelet transform is used to decompose the image signal, and 2D polynomial representation is utilized to prune the existing high scale variation of image signal. Quantization with quadtree coding are followed by shift coding are applied to compress the detail band and the residue part of approximation subband. The test results indicate that the introduced system is simple and fast and it leads to better compression gain in comparison with the case of using first order polynomial approximation.

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Big-data Management using Map Reduce on Cloud: Case study, EEG Images' Data
...Show More Authors

Database is characterized as an arrangement of data that is sorted out and disseminated in a way that allows the client to get to the data being put away in a simple and more helpful way. However, in the era of big-data the traditional methods of data analytics may not be able to manage and process the large amount of data. In order to develop an efficient way of handling big-data, this work studies the use of Map-Reduce technique to handle big-data distributed on the cloud. This approach was evaluated using Hadoop server and applied on EEG Big-data as a case study. The proposed approach showed clear enhancement for managing and processing the EEG Big-data with average of 50% reduction on response time. The obtained results provide EEG r

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
Ultrasound Images Registration Based on Optimal Feature Descriptor Using Speeded Up Robust Feature
...Show More Authors

Image registration plays a significant role in the medical image processing field. This paper proposes a development on the accuracy and performance of the Speeded-Up Robust Surf (SURF) algorithm to create Extended Field of View (EFoV) Ultrasound (US) images through applying different matching measures. These measures include Euclidean distance, cityblock distance, variation, and correlation in the matching stage that was built in the SURF algorithm. The US image registration (fusion) was implemented depending on the control points obtained from the used matching measures. The matched points with higher frequency algorithm were proposed in this work to perform and enhance the EFoV for the US images, since the maximum accurate matching po

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Estimation of kidney tumor volume in CT images using medical image segmentation techniques
...Show More Authors

Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati

... Show More
View Publication Preview PDF
Crossref