Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eyes' observation of the different colors and features of images. We propose a multi-layer hybrid system for deep learning using the unsupervised CAE architecture and using the color clustering of the K-mean algorithm to compress images and determine their size and color intensity. The system is implemented using Kodak and Challenge on Learned Image Compression (CLIC) dataset for deep learning. Experimental results show that our proposed method is superior to the traditional compression methods of the autoencoder, and the proposed work has better performance in terms of performance speed and quality measures Peak Signal To Noise Ratio (PSNR) and Structural Similarity Index (SSIM) where the results achieved better performance and high efficiency With high compression bit rates and low Mean Squared Error (MSE) rate the results recorded the highest compression ratios that ranged between (0.7117 to 0.8707) for the Kodak dataset and (0.7191 to 0.9930) for CLIC dataset. The system achieved high accuracy and quality in comparison to the error coefficient, which was recorded (0.0126 to reach 0.0003) below, and this system is onsidered the most quality and accurate compared to the methods of deep learning compared to the deep learning methods of the autoencoder
High frequency (HF) communications have an important role in long distances wireless communications. This frequency band is more important than VHF and UHF, as HF frequencies can cut longer distance with a single hopping. It has a low operation cost because it offers over-the-horizon communications without repeaters, therefore it can be used as a backup for satellite communications in emergency conditions. One of the main problems in HF communications is the prediction of the propagation direction and the frequency of optimum transmission (FOT) that must be used at a certain time. This paper introduces a new technique based on Oblique Ionosonde Station (OIS) to overcome this problem with a low cost and an easier way. This technique uses the
... Show MoreFeatures is the description of the image contents which could be corner, blob or edge. Corners are one of the most important feature to describe image, therefore there are many algorithms to detect corners such as Harris, FAST, SUSAN, etc. Harris is a method for corner detection and it is an efficient and accurate feature detection method. Harris corner detection is rotation invariant but it isn’t scale invariant. This paper presents an efficient harris corner detector invariant to scale, this improvement done by using gaussian function with different scales. The experimental results illustrate that it is very useful to use Gaussian linear equation to deal with harris weakness.
Image pattern classification is considered a significant step for image and video processing. Although various image pattern algorithms have been proposed so far that achieved adequate classification, achieving higher accuracy while reducing the computation time remains challenging to date. A robust image pattern classification method is essential to obtain the desired accuracy. This method can be accurately classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism. Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific orthogonal moments, which limits the understanding of their potential application to various Discrete Orthogonal Moments (DOM
... Show MoreA Multiple System Biometric System Based on ECG Data
Sustainable plant protection and the economy of plant crops worldwide depend heavily on the health of agriculture. In the modern world, one of the main factors influencing economic growth is the quality of agricultural produce. The need for future crop protection and production is growing as disease-affected plants have caused considerable agricultural losses in several crop categories. The crop yield must be increased while preserving food quality and security and having the most negligible negative environmental impact. To overcome these obstacles, early discovery of satisfactory plants is critical. The use of Advances in Intelligent Systems and information computer science effectively helps find more efficient and low-cost solutions. Thi
... Show More<p>There is an Increasing demand for the education in the field of E-learning specially the higher education, and to keep contiuity between the user and the course director in any place and time. This research presents a proposed and simulation multimedia network design for distance learning utilizing ATM technique. The propsed framework determines the principle of ATM technology and shows how multimedia can be integrated within E- learning conteext. The first part of this research presents a theoretical design for the Electricity Department, university of technology. The purpose is to illustrate the usage of the ATM and Multimedia in distance learning process. In addition, this research composes two entities: Software entity
... Show MoreRefractive indices (nD), viscosities (η) and densities (r) were deliberated for the binary mixtures created by dipropyl amine with 1-octanol, 1-heptanol, 1-hexanol, 1-pentanol and tert-pentyl alcohol at temperature 298.15 K over the perfect installation extent. The function of Redlich-Kister were used to calculate and renovated of the refractive index deviations (∆nD), viscosity deviations (ηE), excess molar Gibbs free energy (∆G*E) and excess molar volumes(Vm E). The standard errors and coefficients were respected by this function. The values of ∆nD, ηE, Vm E and ∆G*E were plotted against mole fraction of dipropyl amine. In all cases the obtained ηE, ∆G*E, Vm E and ∆nD values were negative at 298.15K. Effect of carbon atoms
... Show MoreRefractive indices (nD), viscosities (η) and densities (ρ) were deliberated for the binary mixtures created by dipropyl amine with 1-octanol, 1-heptanol, 1-hexanol, 1-pentanol and tert-pentyl alcohol at temperature 298.15 K over the perfect installation extent. The function of Redlich-Kister were used to calculate and renovated of the refractive index deviations (∆nD), viscosity deviations (ηE), excess molar Gibbs free energy (∆G*E) and excess molar volumes (VmE) The standard errors and coefficients were respected by this function. The values of ∆nD, ηE, VmE and ∆G*E were plotted against mole fraction of dipropyl amine. In all cases the obtained ηE, ∆G*E, VmE and ∆nD values were negative at 298.15K. Effect of carbo
... Show More