Preferred Language
Articles
/
iRe5Po8BVTCNdQwCz2Wy
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eyes' observation of the different colors and features of images. We propose a multi-layer hybrid system for deep learning using the unsupervised CAE architecture and using the color clustering of the K-mean algorithm to compress images and determine their size and color intensity. The system is implemented using Kodak and Challenge on Learned Image Compression (CLIC) dataset for deep learning. Experimental results show that our proposed method is superior to the traditional compression methods of the autoencoder, and the proposed work has better performance in terms of performance speed and quality measures Peak Signal To Noise Ratio (PSNR) and Structural Similarity Index (SSIM) where the results achieved better performance and high efficiency With high compression bit rates and low Mean Squared Error (MSE) rate the results recorded the highest compression ratios that ranged between (0.7117 to 0.8707) for the Kodak dataset and (0.7191 to 0.9930) for CLIC dataset. The system achieved high accuracy and quality in comparison to the error coefficient, which was recorded (0.0126 to reach 0.0003) below, and this system is onsidered the most quality and accurate compared to the methods of deep learning compared to the deep learning methods of the autoencoder

Publication Date
Fri May 06 2016
Journal Name
Journal Of The College Of Basic Education
Some Thermodynmic Properties of binary Mixtures of Alcohol isomers and Sulfolane at 298.15 K
...Show More Authors

Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Hiding Techniques for Dynamic Encryption Text based on Corner Point
...Show More Authors

Hiding technique for dynamic encryption text using encoding table and symmetric encryption method (AES algorithm) is presented in this paper. The encoding table is generated dynamically from MSB of the cover image points that used as the first phase of encryption. The Harris corner point algorithm is applied on cover image to generate the corner points which are used to generate dynamic AES key to second phase of text encryption. The embedded process in the LSB for the image pixels except the Harris corner points for more robust. Experimental results have demonstrated that the proposed scheme have embedding quality, error-free text recovery, and high value in PSNR.

View Publication Preview PDF
Scopus (11)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Jun 11 2017
Journal Name
Al-academy
The Theory of knowledge And Their Repercussions On the Journalistic Image In Electronic Designs Websites
...Show More Authors

represent websites link support of human communicate and cohesion of cultures different depending on their languages and their environments around, it was the evolution of one of the most important means of communication of services for electronic networks, the Internet active role in containing the world Bbodqh science and knowledge to Taatlaqah cultures from which derives its intellectual and cognitive cupboards continuity and as a link language for each those environmental Altdadat, linguistic, religious, political, economic . We all know that these electronic means difficult promise ring intellectual and mental connectivity for the masses polarized without being of the image as an element Kravekaa supporter of the electronic media an

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Iop Conference Series: Materials Science And Engineering
On Estimation of the Stress – Strength Reliability Based on Lomax Distribution
...Show More Authors
Abstract<p>The present paper concerns with the problem of estimating the reliability system in the stress – strength model under the consideration non identical and independent of stress and strength and follows Lomax Distribution. Various shrinkage estimation methods were employed in this context depend on Maximum likelihood, Moment Method and shrinkage weight factors based on Monte Carlo Simulation. Comparisons among the suggested estimation methods have been made using the mean absolute percentage error criteria depend on MATLAB program.</p>
View Publication
Scopus (9)
Crossref (4)
Scopus Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Applied Geophysics
Predicting dynamic shear wave slowness from well logs using machine learning methods in the Mishrif Reservoir, Iraq
...Show More Authors

Crossref (11)
Crossref
Publication Date
Sun Sep 03 2023
Journal Name
Wireless Personal Communications
Application of Healthcare Management Technologies for COVID-19 Pandemic Using Internet of Things and Machine Learning Algorithms
...Show More Authors

View Publication
Scopus (8)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Applied Geophysics
Predicting dynamic shear wave slowness from well logs using machine learning methods in the Mishrif Reservoir, Iraq
...Show More Authors

View Publication
Scopus (16)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Sun Jan 22 2023
Journal Name
Mesopotamian Journal Of Big Data
Parallel Machine Learning Algorithms
...Show More Authors

 To expedite the learning process, a group of algorithms known as parallel machine learning algorithmscan be executed simultaneously on several computers or processors. As data grows in both size andcomplexity, and as businesses seek efficient ways to mine that data for insights, algorithms like thesewill become increasingly crucial. Data parallelism, model parallelism, and hybrid techniques are justsome of the methods described in this article for speeding up machine learning algorithms. We alsocover the benefits and threats associated with parallel machine learning, such as data splitting,communication, and scalability. We compare how well various methods perform on a variety ofmachine learning tasks and datasets, and we talk abo

... Show More
View Publication
Scopus (23)
Crossref (16)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Molecular Liquids
Theoretical modeling study on preparation of nanosized drugs using supercritical-based processing: Determination of solubility of Chlorothiazide in supercritical carbon dioxide
...Show More Authors

View Publication
Scopus (11)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Fri Oct 02 2020
Journal Name
International Journal Of Pharmaceutical Research
A turbidimetric method for the quantitative determination of cyproheptadine hydrochloride in tablets using an optoelectronic detector based on the LEDs array
...Show More Authors

Scopus (17)
Crossref (2)
Scopus Crossref