Preferred Language
Articles
/
iRe5Po8BVTCNdQwCz2Wy
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eyes' observation of the different colors and features of images. We propose a multi-layer hybrid system for deep learning using the unsupervised CAE architecture and using the color clustering of the K-mean algorithm to compress images and determine their size and color intensity. The system is implemented using Kodak and Challenge on Learned Image Compression (CLIC) dataset for deep learning. Experimental results show that our proposed method is superior to the traditional compression methods of the autoencoder, and the proposed work has better performance in terms of performance speed and quality measures Peak Signal To Noise Ratio (PSNR) and Structural Similarity Index (SSIM) where the results achieved better performance and high efficiency With high compression bit rates and low Mean Squared Error (MSE) rate the results recorded the highest compression ratios that ranged between (0.7117 to 0.8707) for the Kodak dataset and (0.7191 to 0.9930) for CLIC dataset. The system achieved high accuracy and quality in comparison to the error coefficient, which was recorded (0.0126 to reach 0.0003) below, and this system is onsidered the most quality and accurate compared to the methods of deep learning compared to the deep learning methods of the autoencoder

Publication Date
Fri Mar 31 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
A Cryptosystem for Database Security Based on RC4 Algorithm
...Show More Authors

Because of vulnerable threats and attacks against database during transmission from sender to receiver, which is one of the most global security concerns of network users, a lightweight cryptosystem using Rivest Cipher 4 (RC4) algorithm is proposed. This cryptosystem maintains data privacy by performing encryption of data in cipher form and transfers it over the network and again performing decryption to original data. Hens, ciphers represent encapsulating system for database tables

View Publication
Crossref (1)
Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Improved throughput of Elliptic Curve Digital Signature Algorithm (ECDSA) processor implementation over Koblitz curve k-163 on Field Programmable Gate Array (FPGA)
...Show More Authors

            The widespread use of the Internet of things (IoT) in different aspects of an individual’s life like banking, wireless intelligent devices and smartphones has led to new security and performance challenges under restricted resources. The Elliptic Curve Digital Signature Algorithm (ECDSA) is the most suitable choice for the environments due to the smaller size of the encryption key and changeable security related parameters. However, major performance metrics such as area, power, latency and throughput are still customisable and based on the design requirements of the device.

The present paper puts forward an enhancement for the throughput performance metric by p

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Baghdad Science Journal
Symmetric- Based Steganography Technique Using Spiral-Searching Method for HSV Color Images
...Show More Authors

Steganography is defined as hiding confidential information in some other chosen media without leaving any clear evidence of changing the media's features. Most traditional hiding methods hide the message directly in the covered media like (text, image, audio, and video). Some hiding techniques leave a negative effect on the cover image, so sometimes the change in the carrier medium can be detected by human and machine. The purpose of suggesting hiding information is to make this change undetectable. The current research focuses on using complex method to prevent the detection of hiding information by human and machine based on spiral search method, the Structural Similarity Index Metrics measures are used to get the accuracy and quality

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Clarivate Crossref
Publication Date
Sun Jan 27 2019
Journal Name
Civil Engineering Journal
Effect of Size and Location of Square Web Openings on the Entire Behavior of Reinforced Concrete Deep Beams
...Show More Authors

This paper presents an experimental and numerical study which was carried out to examine the influence of the size and the layout of the web openings on the load carrying capacity and the serviceability of reinforced concrete deep beams. Five full-scale simply supported reinforced concrete deep beams with two large web openings created in shear regions were tested up to failure. The shear span to overall depth ratio was (1.1). Square openings were located symmetrically relative to the midspan section either at the midpoint or at the interior boundaries of the shear span. Two different side dimensions for the square openings were considered, mainly, (200) mm and (230) mm. The strength results proved that the shear capacity of the dee

... Show More
View Publication
Crossref (20)
Crossref
Publication Date
Sun Jan 27 2019
Journal Name
Civil Engineering Journal
Effect of Size and Location of Square Web Openings on the Entire Behavior of Reinforced Concrete Deep Beams
...Show More Authors

This paper presents an experimental and numerical study which was carried out to examine the influence of the size and the layout of the web openings on the load carrying capacity and the serviceability of reinforced concrete deep beams. Five full-scale simply supported reinforced concrete deep beams with two large web openings created in shear regions were tested up to failure. The shear span to overall depth ratio was (1.1). Square openings were located symmetrically relative to the midspan section either at the midpoint or at the interior boundaries of the shear span. Two different side dimensions for the square openings were considered, mainly, (200) mm and (230) mm. The strength results proved that the shear capacity of the dee

... Show More
Scopus (22)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Studying the Classification of Texture Images by K-Means of Co-Occurrence Matrix and Confusion Matrix
...Show More Authors

In this research, a group of gray texture images of the Brodatz database was studied by building the features database of the images using the gray level co-occurrence matrix (GLCM), where the distance between the pixels was one unit and for four angles (0, 45, 90, 135). The k-means classifier was used to classify the images into a group of classes, starting from two to eight classes, and for all angles used in the co-occurrence matrix. The distribution of the images on the classes was compared by comparing every two methods (projection of one class onto another where the distribution of images was uneven, with one category being the dominant one. The classification results were studied for all cases using the confusion matrix between every

... Show More
Preview PDF
Crossref (5)
Crossref
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation
...Show More Authors

Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (8)
Scopus Crossref
Publication Date
Fri Mar 10 2023
Journal Name
Indian Journal Of Physics
Describing the differential inelastic inverse mean free path of PMMA polymer with the Mermin–Belkacem-Sigmund model
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Oct 02 2024
Journal Name
International Development Planning Review
THE EFFECT OF EXERCISES USING A MINI SQUASH COURT ON IMPROVING SOME MOTOR ABILITIES AND LEARNING SOME BASIC SKILLS FOR PLAYERS AGED 10-12 YEARS
...Show More Authors

Publication Date
Wed Oct 02 2024
Journal Name
International Development Planning Review
THE EFFECT OF EXERCISES USING A MINI SQUASH COURT ON IMPROVING SOME MOTOR ABILITIES AND LEARNING SOME BASIC SKILLS FOR PLAYERS AGED 10-12 YEARS
...Show More Authors