Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eyes' observation of the different colors and features of images. We propose a multi-layer hybrid system for deep learning using the unsupervised CAE architecture and using the color clustering of the K-mean algorithm to compress images and determine their size and color intensity. The system is implemented using Kodak and Challenge on Learned Image Compression (CLIC) dataset for deep learning. Experimental results show that our proposed method is superior to the traditional compression methods of the autoencoder, and the proposed work has better performance in terms of performance speed and quality measures Peak Signal To Noise Ratio (PSNR) and Structural Similarity Index (SSIM) where the results achieved better performance and high efficiency With high compression bit rates and low Mean Squared Error (MSE) rate the results recorded the highest compression ratios that ranged between (0.7117 to 0.8707) for the Kodak dataset and (0.7191 to 0.9930) for CLIC dataset. The system achieved high accuracy and quality in comparison to the error coefficient, which was recorded (0.0126 to reach 0.0003) below, and this system is onsidered the most quality and accurate compared to the methods of deep learning compared to the deep learning methods of the autoencoder
The feature extraction step plays major role for proper object classification and recognition, this step depends mainly on correct object detection in the given scene, the object detection algorithms may result with some noises that affect the final object shape, a novel approach is introduced in this paper for filling the holes in that object for better object detection and for correct feature extraction, this method is based on the hole definition which is the black pixel surrounded by a connected boundary region, and hence trying to find a connected contour region that surrounds the background pixel using roadmap racing algorithm, the method shows a good results in 2D space objects.
Keywords: object filling, object detection, objec
Na+/K+-ATPase is a prevalent enzyme that maintains the Na+ and K+ gradients across the cell membrane by transporting three Na+ out and two K+ into the cell, the aim of this study is to provide detailed mechanistic insights, potentially with important effects on physiological regulation of active Na and K transport in tissues of Aerobic Thyroid Patient. Thyroid tissues were obtained from a 35 year old patients, the operation was carried out at the Al-Hadi Specialist Hospital in Samarra city, the sample was stored at -20ºC until used. The purification protocol included Salt Precipitation, Ion Exchange Chromatography, Gel Filtration and E
... Show MoreThe notion of interval value fuzzy k-ideal of KU-semigroup was studied as a generalization of afuzzy k-ideal of KU-semigroup. Some results of this idea under homomorphism are discussed. Also, we presented some properties about the image (pre-image) for interval~ valued fuzzy~k-ideals of a KU-semigroup. Finally, the~ product of~ interval valued fuzzyk-ideals is established.
The nuclear charge density distributions, form factors and
corresponding proton, charge, neutron, and matter root mean square
radii for stable 4He, 12C, and 16O nuclei have been calculated using
single-particle radial wave functions of Woods-Saxon potential and
harmonic-oscillator potential for comparison. The calculations for the
ground charge density distributions using the Woods-Saxon potential
show good agreement with experimental data for 4He nucleus while
the results for 12C and 16O nuclei are better in harmonic-oscillator
potential. The calculated elastic charge form factors in Woods-Saxon
potential are better than the results of harmonic-oscillator potential.
Finally, the calculated root mean square
NGC 6946 have been observed with BVRI filters, on October 15-18,
2012, with the Newtonian focus of the 1.88m telescope, Kottamia
observatory, of the National Research Institute of Astronomy and
Geophysics, Egypt (NRIAG), then we combine the BVRI filters to
obtain an astronomical image to the spiral galaxy NGC 6946 which
is regarded main source of information to discover the components of
this galaxy, where galaxies are considered the essential element of
the universe. To know the components of NGC 6946, we studied it
with the Variable Precision Rough Sets technique to determine the
contribution of the Bulge, disk, and arms of NGC 6946 according to
different color in the image. From image we can determined th
order to increase the level of security, as this system encrypts the secret image before sending it through the internet to the recipient (by the Blowfish method). As The Blowfish method is known for its efficient security; nevertheless, the encrypting time is long. In this research we try to apply the smoothing filter on the secret image which decreases its size and consequently the encrypting and decrypting time are decreased. The secret image is hidden after encrypting it into another image called the cover image, by the use of one of these two methods" Two-LSB" or" Hiding most bits in blue pixels". Eventually we compare the results of the two methods to determine which one is better to be used according to the PSNR measurs