Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eyes' observation of the different colors and features of images. We propose a multi-layer hybrid system for deep learning using the unsupervised CAE architecture and using the color clustering of the K-mean algorithm to compress images and determine their size and color intensity. The system is implemented using Kodak and Challenge on Learned Image Compression (CLIC) dataset for deep learning. Experimental results show that our proposed method is superior to the traditional compression methods of the autoencoder, and the proposed work has better performance in terms of performance speed and quality measures Peak Signal To Noise Ratio (PSNR) and Structural Similarity Index (SSIM) where the results achieved better performance and high efficiency With high compression bit rates and low Mean Squared Error (MSE) rate the results recorded the highest compression ratios that ranged between (0.7117 to 0.8707) for the Kodak dataset and (0.7191 to 0.9930) for CLIC dataset. The system achieved high accuracy and quality in comparison to the error coefficient, which was recorded (0.0126 to reach 0.0003) below, and this system is onsidered the most quality and accurate compared to the methods of deep learning compared to the deep learning methods of the autoencoder
MH Hamzah, AF Abbas, International Journal of Early Childhood Special Education, 2022
In this work, we construct and classify the projectively distinct (k,3)-arcs in PG(2,9), where k ≥ 5, and prove that the complete (k,3)-arcs do not exist, where 5 ≤ k ≤ 13. We found that the maximum complete (k,3)-arc in PG(2,q) is the (16,3)-arc and the minimum complete (k,3)-arc in PG(2,q) is the (14,3)-arc. Moreover, we found the complete (k,3)-arcs between them.
The purpose of this work is to study the classification and construction of (k,3)-arcs in the projective plane PG(2,7). We found that there are two (5,3)-arcs, four (6,3)-arcs, six (7,3)arcs, six (8,3)-arcs, seven (9,3)-arcs, six (10,3)-arcs and six (11,3)-arcs. All of these arcs are incomplete. The number of distinct (12,3)-arcs are six, two of them are complete. There are four distinct (13,3)-arcs, two of them are complete and one (14,3)-arc which is incomplete. There exists one complete (15,3)-arc.
With time progress importance of hiding information become more and more and all steganography applications is like computer games between hiding and extracting data, or like thieves and police men always thieve hides from police men in different ways to keep him out of prison. The sender always hides information in new way in order not to be understood by the attackers and only the authorized receiver can open the hiding message. This paper explores our proposed random method in detail, how chooses locations of pixel in randomly , how to choose a random bit to hide information in the chosen pixel, how it different from other approaches, how applying information hiding criteria on the proposed project, and attempts to test out in code, and
... Show MoreThe research aimed to identify “The impact of an instructional-learning design based on the brain- compatible model in systemic thinking among first intermediate grade female students in Mathematics”, in the day schools of the second Karkh Educational directorate.In order to achieve the research objective, the following null hypothesis was formulated:There is no statistically significant difference at the significance level (0.05) among the average scores of the experimental group students who will be taught by applying an (instructional- learning) design based to on the brain–compatible model and the average scores of the control group students who will be taught through the traditional method in the systemic thinking test.The resear
... Show MoreBackground: Differentiation between malignant and benign vertebral compression fracture is often problematic. This is precisely difficult in elderly who are predisposed to benign compression caused by osteoporosis .Establishing correct diagnosis is of great importance in determining the treatment andprognosis.A study was performed to determine which magnetic resonance imaging findings are useful in discrimination between metastatic and acute osteoporotic compression fractures of the spine. Recently MRI is being increasingly used for evaluation of these fractures.Objectives: The aim of this study is to establish the correct diagnosis of malignant and benign compression vertebral fracture by MRI to determine treatment and prognosis.Methods
... Show MoreApplying load to a structural member may result in a bottle-shaped compression field especially when the width of the loading is less than the width of bearing concrete members. At the Building and Construction Department – the University of Technology-Iraq, series tests on fibre reinforced concrete specimens were carried out, subjected to compression forces at the top and bottom of the specimens to produce compression field. The effects of steel fibre content, concrete compressive strength, transverse tension reinforcement, the height of test specimen, and the ratio of the width of loading plate to specimen width were studied by testing a total of tenth normal strength concrete blocks with steel fibre and one normal s
... Show More