Preferred Language
Articles
/
iRe5Po8BVTCNdQwCz2Wy
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eyes' observation of the different colors and features of images. We propose a multi-layer hybrid system for deep learning using the unsupervised CAE architecture and using the color clustering of the K-mean algorithm to compress images and determine their size and color intensity. The system is implemented using Kodak and Challenge on Learned Image Compression (CLIC) dataset for deep learning. Experimental results show that our proposed method is superior to the traditional compression methods of the autoencoder, and the proposed work has better performance in terms of performance speed and quality measures Peak Signal To Noise Ratio (PSNR) and Structural Similarity Index (SSIM) where the results achieved better performance and high efficiency With high compression bit rates and low Mean Squared Error (MSE) rate the results recorded the highest compression ratios that ranged between (0.7117 to 0.8707) for the Kodak dataset and (0.7191 to 0.9930) for CLIC dataset. The system achieved high accuracy and quality in comparison to the error coefficient, which was recorded (0.0126 to reach 0.0003) below, and this system is onsidered the most quality and accurate compared to the methods of deep learning compared to the deep learning methods of the autoencoder

Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Choosing the best method for estimating the survival function of inverse Gompertz distribution by using Integral mean squares error (IMSE)
...Show More Authors

In this research , we study the inverse Gompertz distribution (IG) and estimate the  survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes

View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Choosing the best method for estimating the survival function of inverse Gompertz distribution by using Integral mean squares error (IMSE)
...Show More Authors

In this research , we study the inverse Gompertz distribution (IG) and estimate the  survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes

View Publication
Crossref
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Estimation of kidney tumor volume in CT images using medical image segmentation techniques
...Show More Authors

Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Performance of Case-Based Reasoning Retrieval Using Classification Based on Associations versus Jcolibri and FreeCBR: A Further Validation Study
...Show More Authors

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Laser
Experimental Study of Spatial Self-Phase Modulation (SSPM) Based on Laser Beam and Hybrid Functionalized Carbon Nanotubes/Silver Nanoparticles (F-Mwcnts/Ag-Nps) Acetone Suspensions
...Show More Authors

Focusing of Gaussian laser beam through nonlinear media can induce spatial self- phase modulation which forms a far field intensity pattern of concentric rings. The nonlinear refractive index change of material depends on the number of pattern rings. In this paper, a formation of tunable nonlinear refractive index change of hybrid functionalized carbon nanotubes/silver nanoparticles acetone suspensions (F-MWCNTs/Ag-NPs) at weight mixing ratio of 1:3 and volume fraction of 6x10-6 , 9x10-6 , and 18x10-6 using laser beam at wavelength of 473nm was investigated experimentally. The results showed that tunable nonlinear refractive indices were obtained and increasing of incident laser power density led to increase the nonlinear refractive inde

... Show More
View Publication Preview PDF
Publication Date
Sat Mar 13 2021
Journal Name
Al-nahrain Journal Of Science
Hiding Multi Short Audio Signals in Color Image by using Fast Fourier Transform
...Show More Authors

Many purposes require communicating audio files between the users using different applications of social media. The security level of these applications is limited; at the same time many audio files are secured and must be accessed by authorized persons only, while, most present works attempt to hide single audio file in certain cover media. In this paper, a new approach of hiding three audio signals with unequal sizes in single color digital image has been proposed using the frequencies transform of this image. In the proposed approach, the Fast Fourier Transform was adopted where each audio signal is embedded in specific region with high frequencies in the frequency spectrum of the cover image to sa

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Inmateh Agricultural Engineering
DETERMINING THE EFFICIENCY OF A SMART SPRAYING ROBOT FOR CROP PROTECTION USING IMAGE PROCESSING TECHNOLOGY
...Show More Authors

A system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.

View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Some K-Banhatti Polynomials of First Dominating David Derived Networks
...Show More Authors

Chemical compounds, characteristics, and molecular structures are inevitably connected. Topological indices are numerical values connected with chemical molecular graphs that contribute to understanding a chemical compounds physical qualities, chemical reactivity, and biological activity. In this study, we have obtained some topological properties of the first dominating David derived (DDD) networks and computed several K-Banhatti polynomials of the first type of DDD.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Educational And Psychological Researches
The Teaching Practices of Faculty Members in Northern Border University According to the Brain-Based Learning Theory
...Show More Authors

The present study aims to identify the most and the least common teaching practices among faculty members in Northern Border University according to brain-based learning theory, as well as to identify the effect of sex, qualifications, faculty type, and years of experiences in teaching practices. The study sample consisted of (199) participants divided into 100 males and 99 females. The study results revealed that the most teaching practice among the study sample was ‘I am trying to create an Environment of encouragement and support within the classroom which found to be (4.4623). As for the least teaching practice was ‘I use a natural musical sounds to create student's mood to learn’ found to be (2.2965). The study results also in

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Influence of Cold Plasma on Sesame Paste and the Nano Sesame Paste Based on Co-occurrence Matrix
...Show More Authors

The aim of the research is to investigate the effect of cold plasma on the bacteria grown on texture of sesame paste in its normal particle and nano particle size. Starting by using the image segmentation process depending on the threshold method, it is used to get rid of the reflection of the glass slides on which the sesame samples are placed.  The classification process implemented to separate the sesame paste texture from normal and abnormal texture. The abnormal texture appears when the bacteria has been grown on the sesame paste after being left for two days in the air, unsupervised k-mean classification process used to classify the infected region, the normal region and the treated region. The bacteria treated with cold plasma, t

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (4)
Scopus Clarivate Crossref