Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eyes' observation of the different colors and features of images. We propose a multi-layer hybrid system for deep learning using the unsupervised CAE architecture and using the color clustering of the K-mean algorithm to compress images and determine their size and color intensity. The system is implemented using Kodak and Challenge on Learned Image Compression (CLIC) dataset for deep learning. Experimental results show that our proposed method is superior to the traditional compression methods of the autoencoder, and the proposed work has better performance in terms of performance speed and quality measures Peak Signal To Noise Ratio (PSNR) and Structural Similarity Index (SSIM) where the results achieved better performance and high efficiency With high compression bit rates and low Mean Squared Error (MSE) rate the results recorded the highest compression ratios that ranged between (0.7117 to 0.8707) for the Kodak dataset and (0.7191 to 0.9930) for CLIC dataset. The system achieved high accuracy and quality in comparison to the error coefficient, which was recorded (0.0126 to reach 0.0003) below, and this system is onsidered the most quality and accurate compared to the methods of deep learning compared to the deep learning methods of the autoencoder
Spatial data observed on a group of areal units is common in scientific applications. The usual hierarchical approach for modeling this kind of dataset is to introduce a spatial random effect with an autoregressive prior. However, the usual Markov chain Monte Carlo scheme for this hierarchical framework requires the spatial effects to be sampled from their full conditional posteriors one-by-one resulting in poor mixing. More importantly, it makes the model computationally inefficient for datasets with large number of units. In this article, we propose a Bayesian approach that uses the spectral structure of the adjacency to construct a low-rank expansion for modeling spatial dependence. We propose a pair of computationally efficient estimati
... Show More إن المقصود باختبارات حسن المطابقة هو التحقق من فرضية العدم القائمة على تطابق مشاهدات أية عينة تحت الدراسة لتوزيع احتمالي معين وترد مثل هكذا حالات في التطبيق العملي بكثرة وفي كافة المجالات وعلى الأخص بحوث علم الوراثة والبحوث الطبية والبحوث الحياتية ,عندما اقترح كلا من Shapiro والعالم Wilk عام 1965 اختبار حسن المطابقة الحدسي مع معالم القياس
(
The aim of this paper is to present the numerical method for solving linear system of Fredholm integral equations, based on the Haar wavelet approach. Many test problems, for which the exact solution is known, are considered. Compare the results of suggested method with the results of another method (Trapezoidal method). Algorithm and program is written by Matlab vergion 7.
In this work, the fractional damped Burger's equation (FDBE) formula = 0,
The analysis, behavior of two-phase flow incompressible fluid in T-juction is done by using "A Computational Fluid Dynamic (CFD) model" that application division of different in industries. The level set method was based in “Finite Element method”. In our search the behavior of two phase flow (oil and water) was studed. The two-phase flow is taken to simulate by using comsol software 4.3. The multivariable was studying such as velocity distribution, share rate, pressure and the fraction of volume at various times. The velocity was employed at the inlet (0.2633, 0.1316, 0.0547 and 0.0283 m/s) for water and (0.1316 m/s) for oil, over and above the pressure set at outlet as a boundary condition. It was observed through the program
... Show MoreZnS nanoparticles were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of ZnS quantum dots were zinc acetate (R & M Chemical) as zinc source, thioacetamide as a sulfur source and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The quantum dots of ZnS with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by scanning electron microscopy (SEM). The particle size is determined by field effect scanning electron microscopy (FESEM), UV-Visible absorption spectroscopy and XRD. UV-Visible absorption spectroscopy analysis shows that the absorption peak of the as-prep
... Show More
In this paper, the ability of using corn leaves as low-cost natural biowaste adsorbent material for the removal of Indigo Carmen (IC) dye was studied. Batch mode system was used to study several parameters such as, contact time (4 days), concentration of dye (10-50) ppm, adsorbent dosage (0.05-0.25) gram, pH (2-12) and temperature (30-60) oC. The corn leaf was characterized by Fourier-transform infrared spectroscopy device before and after the adsorption process of the IC dye and scanning electron microscope device was used to find the morphology of the adsorbent material. The experimental data was imputing with several isotherms where it fits with Freundlich (R2 = 0.9
... Show More