Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eyes' observation of the different colors and features of images. We propose a multi-layer hybrid system for deep learning using the unsupervised CAE architecture and using the color clustering of the K-mean algorithm to compress images and determine their size and color intensity. The system is implemented using Kodak and Challenge on Learned Image Compression (CLIC) dataset for deep learning. Experimental results show that our proposed method is superior to the traditional compression methods of the autoencoder, and the proposed work has better performance in terms of performance speed and quality measures Peak Signal To Noise Ratio (PSNR) and Structural Similarity Index (SSIM) where the results achieved better performance and high efficiency With high compression bit rates and low Mean Squared Error (MSE) rate the results recorded the highest compression ratios that ranged between (0.7117 to 0.8707) for the Kodak dataset and (0.7191 to 0.9930) for CLIC dataset. The system achieved high accuracy and quality in comparison to the error coefficient, which was recorded (0.0126 to reach 0.0003) below, and this system is onsidered the most quality and accurate compared to the methods of deep learning compared to the deep learning methods of the autoencoder
A dispersive liquid-liquid microextraction combines with UV-V is spectrophotometry for the preconcentration and determination of Mefenamic acid in pharmaceutical preparation was developed and introduced. The proposed method is based on the formation of charge transfer complexation between mefenamic acid and chloranil as an n-electron donor and a p-acceptor, respectively to form a violet chromogen complex measured at 542 nm. The important parameters affecting the efficiency of DLLME were evaluated and optimized. Under the optimum conditions, the calibration graphs of standard and drug, were ranged 0.03-10 µg mL-1. The limits of detection, quantification and Sandell's sensitivity were calculated. Good recoveries of MAF Std. and drug at 0.05,
... Show MoreThe economic units always sought to maintain its market position and Trchinh the technology management and modern methods that will support success factors .vdila about it has become a customer and one profitability analysis of the most practical way benefit of economic units as modern management focus their attention on achieving this satisfaction, as the customers make up the axis of the success of every organization and that there are many government units aiming to profit directs attention to customers and the number of these units increased continuously. The administration used the customer profitability analysis in order to obtain information to assist in making and decision-making process. How to use modern tec
... Show MoreLasmiditan (LAS) was formulated as a nanoemulsion based in situ gel (NEIG)with the aim of improving its oral bioavailability via application intranasally. The solubility of LAS in oils, emulsifiers, and co-emulsifiers was determined to identify nanoemulsion (NE)components. Phase diagrams were constructed to identify the area of nanoemulsification. LAS NE was formulated using the spontaneous nanoemulsification method. Four NEs (F19, F24, F31, and F34) containing 7-15 % oleic acid (OA) as an oily phase, 40-55% labrasol (LR), and transcutol (TC) as emulsifier mixture at (1:1), (2:1), (3:1), and (1:2) ratio with 30-53 % (w/w) aqueous phase, having suitable optical transparency of 95–98%, globule size of 104-140 nm and polydisper
... Show MoreAbstract  
... Show More