Preferred Language
Articles
/
iRe5Po8BVTCNdQwCz2Wy
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eyes' observation of the different colors and features of images. We propose a multi-layer hybrid system for deep learning using the unsupervised CAE architecture and using the color clustering of the K-mean algorithm to compress images and determine their size and color intensity. The system is implemented using Kodak and Challenge on Learned Image Compression (CLIC) dataset for deep learning. Experimental results show that our proposed method is superior to the traditional compression methods of the autoencoder, and the proposed work has better performance in terms of performance speed and quality measures Peak Signal To Noise Ratio (PSNR) and Structural Similarity Index (SSIM) where the results achieved better performance and high efficiency With high compression bit rates and low Mean Squared Error (MSE) rate the results recorded the highest compression ratios that ranged between (0.7117 to 0.8707) for the Kodak dataset and (0.7191 to 0.9930) for CLIC dataset. The system achieved high accuracy and quality in comparison to the error coefficient, which was recorded (0.0126 to reach 0.0003) below, and this system is onsidered the most quality and accurate compared to the methods of deep learning compared to the deep learning methods of the autoencoder

Publication Date
Sat Aug 10 2024
Journal Name
Cureus
Machine Learning and Vision: Advancing the Frontiers of Diabetic Cataract Management
...Show More Authors

View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Wed Aug 31 2022
Journal Name
Al-kindy College Medical Journal
Cervical Pain Related to Position of the Neck during E-Learning
...Show More Authors

Background: During the pandemic, Corona virus forced many people, especially students, to spend more time than before on the computer and smartphone to study and communicate. The poor posture of the body may have worse effect on its body parts , most of which is the cervical spine (forward head posture).

Objective: To assess the incidence of neck pain and the associated factors among undergraduate medical students related to position during E learning

Subjects and Methods: Cross-sectional study was conducted among medical students in three Iraqi universities during 2021. The sample size w

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jul 26 2025
Journal Name
Arab World English Journal
YouTube as a Learning Tool Among EFL Learners: A Systematic Review
...Show More Authors

This review paper examines the crucial impact of YouTube on learning English as a Foreign Language. Recently, learners’ interaction and development of their skills have been improved due to the integration of digital platforms into language education. YouTube is regarded as one of the most prevalent platforms due to its accessibility, multimodal content, and capacity to simulate real-life communication. This study tackles thirty selected research articles from various cultural and institutional backgrounds to identify the pedagogical benefits and challenges associated with using YouTube in teaching English. Conventional methods of teaching English as a foreign language encounter difficulties in improving students’ engagement and

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Iraqi Journal Of Physics
Enhancement of Photoconductive Detector Based on Carbon Nanotubes Decorated with Silver Nanoparticles by Adding Conductive Polymer
...Show More Authors

In this work, wide band range photo detector operating in UV, Visible and IR was fabricated using carbon nanotubes (MWCNTs, SWCNTs) decorated with silver nanoparticles (Ag NPs). Silicon was used as a substrate to deposited CNTs/Ag NPs by the drop casting technique. Polyamide nylon polymer was used to coat CNTs/Ag NPs to enhance the photo-response of the detector. The electro-exploding wire technology was used to synthesize Ag NPs. Good dispersion of silver NPs achieved by a simple chemistry process on the surface of CNTs. The optical, structure and electrical characteristic of CNTs decorated with Ag NPs were characterized by X-Ray diffraction and Field Emission Scanning Electron Microscopy.  X-ray diffra

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 30 2023
Journal Name
Ingénierie Des Systèmes D Information
Performance Evaluation of a Multi Organizations Secure Internet of Vehicles Based on Hyperledger Fabric Blockchain Platform
...Show More Authors

View Publication
Scopus (2)
Scopus Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Indian Journal Of Ecology
Evaluation of maize hybrids, their inbred lines and estimation of genetic divergence based on cluster analysis
...Show More Authors

Scopus (4)
Scopus
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Al-farabi For Engineering Sciences Vol
Prototyping of Multi-Factors Based Vehicle Accident Detection and Reporting System Relying on GPS and GSM
...Show More Authors

Preview PDF
Publication Date
Sun Jun 02 2013
Journal Name
Baghdad Science Journal
Comparison of Maximum Likelihood and some Bayes Estimators for Maxwell Distribution based on Non-informative Priors
...Show More Authors

In this paper, Bayes estimators of the parameter of Maxwell distribution have been derived along with maximum likelihood estimator. The non-informative priors; Jeffreys and the extension of Jeffreys prior information has been considered under two different loss functions, the squared error loss function and the modified squared error loss function for comparison purpose. A simulation study has been developed in order to gain an insight into the performance on small, moderate and large samples. The performance of these estimators has been explored numerically under different conditions. The efficiency for the estimators was compared according to the mean square error MSE. The results of comparison by MSE show that the efficiency of Bayes est

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jun 02 2013
Journal Name
Baghdad Science Journal
Comparison of Maximum Likelihood and some Bayes Estimators for Maxwell Distribution based on Non-informative Priors
...Show More Authors

In this paper, Bayes estimators of the parameter of Maxwell distribution have been derived along with maximum likelihood estimator. The non-informative priors; Jeffreys and the extension of Jeffreys prior information has been considered under two different loss functions, the squared error loss function and the modified squared error loss function for comparison purpose. A simulation study has been developed in order to gain an insight into the performance on small, moderate and large samples. The performance of these estimators has been explored numerically under different conditions. The efficiency for the estimators was compared according to the mean square error MSE. The results of comparison by MSE show that the efficiency of B

... Show More
Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Ieee Transactions On Network Science And Engineering
A Resource Allocation Mechanism for Cloud Radio Access Network Based on Cell Differentiation and Integration Concept
...Show More Authors

View Publication
Crossref (16)
Crossref