Objectives To quantify the reproducibility of the drill calibration process in dynamic navigation guided placement of dental implants and to identify the human factors that could affect the precision of this process in order to improve the overall implant placement accuracy. Methods A set of six drills and four implants were calibrated by three operators following the standard calibration process of NaviDent® (ClaroNav Inc.). The reproducibility of the position of each tip of a drill or implant was calculated in relation to the pre-planned implants’ entry and apex positions. Intra- and inter-operator reliabilities were reported. The effects of the drill length and shape on the reproducibility of the calibration process were also investig
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreIn this study, the dynamic modeling and step input tracking control of single flexible link is studied. The Lagrange-assumed modes approach is applied to get the dynamic model of a planner single link manipulator. A Step input tracking controller is suggested by utilizing the hybrid controller approach to overcome the problem of vibration of tip position through motion which is a characteristic of the flexible link system. The first controller is a modified version of the proportional-derivative (PD) rigid controller to track the hub position while sliding mode (SM) control is used for vibration damping. Also, a second controller (a fuzzy logic based proportional-integral plus derivative (PI+D) control scheme) is developed for both vibra
... Show More An analytical form of the ground state charge density distributions
for the low mass fp shell nuclei ( 40 A 56 ) is derived from a
simple method based on the use of the single particle wave functions
of the harmonic oscillator potential and the occupation numbers of
the states, which are determined from the comparison between theory
and experiment.
For investigating the inelastic longitudinal electron scattering form
factors, an expression for the transition charge density is studied
where the deformation in nuclear collective modes is taken into
consideration besides the shell model space transition density. The
core polarization transition density is evaluated by adopting the
shape of Tass
The using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible parametric models and these models were nonparametric, many researchers, are interested in the study of the function of permanence and its estimation methods, one of these non-parametric methods.
For work of purpose statistical inference parameters around the statistical distribution for life times which censored data , on the experimental section of this thesis has been the comparison of non-parametric methods of permanence function, the existence
... Show MoreNd:YAG laser pulses of 9 nanosecond pulse duration and operating wavelength at 1.06 μm, were utilized to drill high thermal conductivity and high reflectivity aluminum and copper foils. The results showed a dependence of drilled holes characteristics on laser power density and the number of laser pulses used. Drilled depth of 74 ϻm was obtained in aluminum at 11.036×108 W/cm2 of laser power density. Due to its higher melting point, copper required higher laser power density and/or larger number of laser pulses to melt, and a maximum depth of 25 μm was reached at 13.46×108 W/cm2 using single laser pulse.
Building a system to identify individuals through their speech recording can find its application in diverse areas, such as telephone shopping, voice mail and security control. However, building such systems is a tricky task because of the vast range of differences in the human voice. Thus, selecting strong features becomes very crucial for the recognition system. Therefore, a speaker recognition system based on new spin-image descriptors (SISR) is proposed in this paper. In the proposed system, circular windows (spins) are extracted from the frequency domain of the spectrogram image of the sound, and then a run length matrix is built for each spin, to work as a base for feature extraction tasks. Five different descriptors are generated fro
... Show More