Text based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering. The extraction of features gave a high distinguishability and helped GA reach the solution more accurately and faster.
Information security in data storage and transmission is increasingly important. On the other hand, images are used in many procedures. Therefore, preventing unauthorized access to image data is crucial by encrypting images to protect sensitive data or privacy. The methods and algorithms for masking or encoding images vary from simple spatial-domain methods to frequency-domain methods, which are the most complex and reliable. In this paper, a new cryptographic system based on the random key generator hybridization methodology by taking advantage of the properties of Discrete Cosine Transform (DCT) to generate an indefinite set of random keys and taking advantage of the low-frequency region coefficients after the DCT stage to pass them to
... Show MoreNowadays, 3D content is becoming an essential part of multimedia applications, when the 3D content is not protected, hackers may attack and steal it. This paper introduces a proposed scheme that provides high protection for 3D content by implementing multiple levels of security with preserving the original size using weight factor (w). First level of security is implemented by encrypting the texture map based on a 2D Logistic chaotic map. Second level is implemented by shuffling vertices (confusion) based on a 1D Tent chaotic map. Third level is implemented by modifying the vertices values (diffusion) based on a 3D Lorenz chaotic map. Results illustrate that the proposed scheme is completely deform the entire 3D content accord
... Show MoreThe digital multimedia systems become standard at this time because of their extremely sensory activity effects and also the advanced development in its corresponding technology. Recently, biological techniques applied to several varieties of applications such as authentication protocols, organic chemistry, and cryptography. Deoxyribonucleic Acid (DNA) is a tool to hide the key information in multimedia platforms.
In this paper, an embedding algorithm is introduced; first, the image is divided into equally sized blocks, these blocks checked for a small amount color in all the separated blocks. The selected blocks are used to localize the necessary image information. In the second stage, a comparison is between the initial image pixel
In this paper new methods were presented based on technique of differences which is the difference- based modified jackknifed generalized ridge regression estimator(DMJGR) and difference-based generalized jackknifed ridge regression estimator(DGJR), in estimating the parameters of linear part of the partially linear model. As for the nonlinear part represented by the nonparametric function, it was estimated using Nadaraya Watson smoother. The partially linear model was compared using these proposed methods with other estimators based on differencing technique through the MSE comparison criterion in simulation study.
The massive distribution and development in the digital images field with friendly software, that leads to produce unauthorized use. Therefore the digital watermarking as image authentication has been developed for those issues. In this paper, we presented a method depending on the embedding stage and extraction stag. Our development is made by combining Discrete Wavelet Transform (DWT) with Discrete Cosine Transform (DCT) depending on the fact that combined the two transforms will reduce the drawbacks that appears during the recovered watermark or the watermarked image quality of each other, that results in effective rounding method, this is achieved by changing the wavelets coefficients of selected DWT sub bands (HL or HH), followed by
... Show MoreBackground: Obesity tends to appear in modern societies and constitutes a significant public health problem with an increased risk of cardiovascular diseases.
Objective: This study aims to determine the agreement between actual and perceived body image in the general population.
Methods: A descriptive cross-sectional study design was conducted with a sample size of 300. The data were collected from eight major populated areas of Northern district of Karachi Sindh with a period of six months (10th January 2020 to 21st June 2020). The Figure rating questionnaire scale (FRS) was applied to collect the demographic data and perception about body weight. Body mass index (BMI) used for ass
... Show MoreIn this paper a method to determine whether an image is forged (spliced) or not is presented. The proposed method is based on a classification model to determine the authenticity of a tested image. Image splicing causes many sharp edges (high frequencies) and discontinuities to appear in the spliced image. Capturing these high frequencies in the wavelet domain rather than in the spatial domain is investigated in this paper. Correlation between high-frequency sub-bands coefficients of Discrete Wavelet Transform (DWT) is also described using co-occurrence matrix. This matrix was an input feature vector to a classifier. The best accuracy of 92.79% and 94.56% on Casia v1.0 and Casia v2.0 datasets respectively was achieved. This pe
... Show More