Text based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering. The extraction of features gave a high distinguishability and helped GA reach the solution more accurately and faster.
Gas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t
A special methodology for adding a watermark for colored (RGB) image is formed and adding the wavelet transform as a tool during this paper. The watermark is added into two components. The primary one is by taking the key that contain associate eight range from (0...7) every range in it determines the actual bit position in specific component of canopy image. If that bit is analogous to the bit in watermark, (0) are hold on within the Least Significant Bit (LSB) of the watermarked image; otherwise (1) are hold on. The other is that it will add multiple secret keys victimization shift and rotate operations. The watermark is embedded redundantly over all extracted blocks in image to extend image protection. This embedding is completed with
... Show MoreIn this research paper, a new blind and robust fingerprint image watermarking scheme based on a combination of dual-tree complex wavelet transform (DTCWT) and discrete cosine transform (DCT) domains is demonstrated. The major concern is to afford a solution in reducing the consequence of geometric attacks. It is due to the fingerprint features that may be impacted by the incorporated watermark, fingerprint rotations, and displacements that result in multiple feature sets. To integrate the bits of the watermark sequence into a differential process, two DCT-transformed sub-vectors are implemented. The initial sub-vectors were obtained by sub-sampling in the host fingerprint image of both real and imaginary parts of the DTCWT wavelet coeffi
... Show MoreIn this paper, an efficient image segmentation scheme is proposed of boundary based & geometric region features as an alternative way of utilizing statistical base only. The test results vary according to partitioning control parameters values and image details or characteristics, with preserving the segmented image edges.
Healthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt
... Show MoreAbstract
The objective of image fusion is to merge multiple sources of images together in such a way that the final representation contains higher amount of useful information than any input one.. In this paper, a weighted average fusion method is proposed. It depends on using weights that are extracted from source images using counterlet transform. The extraction method is done by making the approximated transformed coefficients equal to zero, then taking the inverse counterlet transform to get the details of the images to be fused. The performance of the proposed algorithm has been verified on several grey scale and color test images, and compared with some present methods.
... Show More