Text based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering. The extraction of features gave a high distinguishability and helped GA reach the solution more accurately and faster.
Each art has its own language. Per his style as an artist, which is characterized by the other. The methods differ and vary expressive art to another depending on the tools and methods used, and is a theatrical phenomenon did, and see, and touch, grasp, understand, and imagine, and emotion, and the blending of ideas and images. When unable to speak the language of the traditional theater For the delivery of a specific meaning or a single non-current at the time the highlight of our new language with a very wide area up to the extent of the unification of the languages of the world as it is in fine painting, it's the body of actor language, so it has become a mime art, which expressed Representative meanings reference and movement of vari
... Show MoreThe detection of diseases affecting plant is very important as it relates to the issue of food security, which is a very serious threat to human life. The system of diagnosis of diseases involves a series of steps starting with the acquisition of images through the pre-processing, segmentation and then features extraction that is our subject finally the process of classification. Features extraction is a very important process in any diagnostic system where we can compare this stage to the spine in this type of system. It is known that the reason behind this great importance of this stage is that the process of extracting features greatly affects the work and accuracy of classification. Proper selection of
... Show MoreThe present study attempts to determine the effect of freezing for different periods on preserved bodies of fish in the laboratory to keep for the research and diagnosis of taxonomic studies and not for consumption. It also endeavors to identify the effect of freezing on some morphometric features of the preserved bodies of fishes. Planiliza abu fish were used to conduct the present study. Fish were frozen by regular freezing in the home refrigerator freezer with temperatures reaching four degrees centigrade below zero. Freezing time is distributed over four months; biometric measurements of frozen fish have been taken in these periods represented by body total length, Standard length, and Head length in centimeters using a ruler ve
... Show MoreThe texture analysis of cancer cells leads to a procedure to distinguish spatial differences within an image and extract essential information. This study used two test tumours images to determine cancer type, location, and geometric characteristics (area, size, dimensions, radius, etc.). The suggested algorithm was designed to detect and distinguish breast cancer using the segmentation-based threshold technique. The method of texture analysis Grey Level Size Zone method was used to extract 11 features: Small Zone Emphasis, Large Zone Emphasis, Low Grey Level Zone Emphasis, High Grey Level Zone Emphasis, Small Zone Low Grey Level Emphasis, Small Zone High Grey Level Emphasis, Large Zone Low Grey Level Emphasis, Large Zone High Gre
... Show MoreOne of the biomedical image problems is the appearance of the bubbles in the slide that could occur when air passes through the slide during the preparation process. These bubbles may complicate the process of analysing the histopathological images. The objective of this study is to remove the bubble noise from the histopathology images, and then predict the tissues that underlie it using the fuzzy controller in cases of remote pathological diagnosis. Fuzzy logic uses the linguistic definition to recognize the relationship between the input and the activity, rather than using difficult numerical equation. Mainly there are five parts, starting with accepting the image, passing through removing the bubbles, and ending with predict the tissues
... Show MoreInformation hiding strategies have recently gained popularity in a variety of fields. Digital audio, video, and images are increasingly being labelled with distinct but undetectable marks that may contain a hidden copyright notice or serial number, or even directly help to prevent unauthorized duplication. This approach is extended to medical images by hiding secret information in them using the structure of a different file format. The hidden information may be related to the patient. In this paper, a method for hiding secret information in DICOM images is proposed based on Discrete Wavelet Transform (DWT). Firstly. segmented all slices of a 3D-image into a specific block size and collecting the host image depend on a generated key
... Show MoreThe concealment of data has emerged as an area of deep and wide interest in research that endeavours to conceal data in a covert and stealth manner, to avoid detection through the embedment of the secret data into cover images that appear inconspicuous. These cover images may be in the format of images or videos used for concealment of the messages, yet still retaining the quality visually. Over the past ten years, there have been numerous researches on varying steganographic methods related to images, that emphasised on payload and the quality of the image. Nevertheless, a compromise exists between the two indicators and to mediate a more favourable reconciliation for this duo is a daunting and problematic task. Additionally, the current
... Show MoreThis paper introduced an algorithm for lossless image compression to compress natural and medical images. It is based on utilizing various casual fixed predictors of one or two dimension to get rid of the correlation or spatial redundancy embedded between image pixel values then a recursive polynomial model of a linear base is used.
The experimental results of the proposed compression method are promising in terms of preserving the details and the quality of the reconstructed images as well improving the compression ratio as compared with the extracted results of a traditional linear predicting coding system.