A spectrophotometric determination of azithromycin was optimized using the simplex model. The approach has been proven to be accurate and sensitive. The analyte has been reacted with bromothymol blue (BTB) to form a colored ion pair which has been extracted in chloroform in a buffer medium of pH=4 of potassium phthalate. The extracted colored product was assayed at 415 nm and exhibited a linear quantification range over (1 - 20) g/ml. The excipients did not exhibit any interferences with the proposed approach for assaying azithromycin in pharmaceutical formulations.
A new spectrophotometric method for the determination of allopurinol drug was investigated. The proposed method was based on the reaction of the intended drug with catechol and Fe(II) to form a blue soluble complex which was measured at λmax 580 nm. A graph of absorbance versus concentration shown that Beer’s law was obeyed over the concentration range of 2–10 μg ml–1 with molar absorptivity of 9.4 x 103 l mol–1 cm–1 and Sandell sensitivity of 1.4 x 10–2 μg cm–2. A recovery percentage of 100% with RSD of 1.0%–1.3% was obtained. The proposed method was applied successfully for the determination of allopurinol drug in tablets with a good accuracy and
A new, simple, sensitive and fast developed method was used for the determination of methyldopa in pure and pharmaceutical formulations by using continuous flow injection analysis. This method is based on formation a burgundy color complex between methyldopa andammonium ceric (IV) nitrate in aqueous medium using long distance chasing photometer NAG-ADF-300-2. The linear range for calibration graph was 0.05-8.3 mmol/L for cell A and 0.1-8.5 mmol/L for cell B, and LOD 952.8000 ng /200 µL for cell A and 3.3348 µg /200 µL for cell B respectively with correlation coefficient (r) 0.9994 for cell A and 0.9991 for cell B, RSD % was lower than 1 % for n=8. The results were compared with classical method UV-Spectrophotometric at λ max=280 n
... Show MoreChromatographic and spectrophotometric methods for the estimation of mebendazole in
pharmaceutical products were developed. The flow injection method was based on the oxidation of
mebendazole by a known excess of sodium hypochlorite at pH=9.5. The excess sodium hypochlorite is then
reacted with chloranilic acid (CAA) to bleach out its color. The absorbance of the excess CAA was recorded
at 530 nm. The method is fast, simple, selective, and sensitive. The chromatographic method was carried out
on a Varian C18 column. The mobile phase was a mixture of acetonitrile (ACN), methanol (MeOH), water
and triethylamine (TEA), (56% ACN, 20% MeOH, 23.5% H2O, 0.5% TEA, v/v), adjusted to pH = 3.0 with
1.0 M hy
It was confirmed in this research that the ligand calcichrome formed stable complex with calcium ion at pH of 8.5 which verified by UV/Vis and FTIR spectral analysis and the complexation occurred via hydroxyl groups .
The stoichiometric ratio of the formed complex was found to be 1:1 by mole ratio and continuous variation methods . Dry ashing method of the complex and flame emission photometric analysis offered a calcium percentage in calcium complex equal 4.5% with an error of 2.41% due to experimental errors .
A new simple and sensitive spectrophotometric method is described for quantification of Nifedipine (NIF) and their pharmaceutical formulation. The selective method was performed by the reduction of NIF nitro group to yield primary amino group using zinc powder with hydrochloric acid. The produced aromatic amine was submitted to oxidative coupling reaction with pyrocatechol and ammonium ceric nitrate to form orange color product measured spectrophotometrically with maximum absorption at 467nm. The product was determined through flow injection analysis (FIA) system and all the chemical and physical parameters were optimized. The concentration range from 5.0 to 140.0 μg.mL-1 was obeyed Beer’s law with a limit of detection and quantitatio
... Show MoreThe Cu(II) was found using a quick and uncomplicated procedure that involved reacting it with a freshly synthesized ligand to create an orange complex that had an absorbance peak of 481.5 nm in an acidic solution. The best conditions for the formation of the complex were studied from the concentration of the ligand, medium, the eff ect of the addition sequence, the eff ect of temperature, and the time of complex formation. The results obtained are scatter plot extending from 0.1–9 ppm and a linear range from 0.1–7 ppm. Relative standard deviation (RSD%) for n = 8 is less than 0.5, recovery % (R%) within acceptable values, correlation coeffi cient (r) equal 0.9986, coeffi cient of determination (r2) equal to 0.9973, and percentage capita
... Show MoreIt is generally accepted that there are two spectrophotometric techniques for quantifying ceftazidime (CFT) in bulk medications and pharmaceutical formulations. The methods are described as simple, sensitive, selective, accurate and efficient techniques. The first method used an alkaline medium to convert ceftazidime to its diazonium salt, which is then combined with the 1-Naphthol (1-NPT) and 2-Naphthol (2-NPT) reagents. The azo dye that was produced brown and red in color with absorption intensities of ƛmax 585 and 545nm respectively. Beer's law was followed in terms of concentration ranging from (3-40) µg .ml-1 For (CFT-1-NPT) and (CFT-2-NPT), the detection limits were 1.0096 and 0.8017 µg.ml-1, respec
... Show More A simple, accurate and precise spectrophotometric method has been proposed for the determination of Mefenamic acid(MA) in dosage forms. Proposed method based on the reaction of cited drug with 1,2-Naphthoquinone-4-Sulfonic sodium (NQS). The optimum experimental condition have been studied. Beer's Law is obeyed in the concentration range 0.5-10.0 µg/mL at 450nm with detection limit of 0.189µg/mL. Effect of pH, reaction time, and volume of NQS on the determination of Mefenamic acid, have been examined. The proposed method has been successfully applied for the determination of Mefenamic acid in pharmaceutical preparations.