Introduction: Carrier-based gutta-percha is an effective method of root canal obturation creating a 3-dimensional filling; however, retrieval of the plastic carrier is relatively difficult, particularly with smaller sizes. The purpose of this study was to develop composite carriers consisting of polyethylene (PE), hydroxyapatite (HA), and strontium oxide (SrO) for carrier-based root canal obturation. Methods: Composite fibers of HA, PE, and SrO were fabricated in the shape of a carrier for delivering gutta-percha (GP) using a melt-extrusion process. The fibers were characterized using infrared spectroscopy and the thermal properties determined using differential scanning calorimetry. The elastic modulus and tensile strength tests were determined using a universal testing machine. The radiographic appearance was established using digital periapical radiographs. Results: The composite core carrier exhibited a melting point of 111°C to 112°C, which would facilitate removal by heat application. The elastic modulus and the tensile strength were found to be lower than those of Thermafil carriers (Dentsply Tulsa Dental, Tulsa, OK). The preliminary radiographic evaluation showed that the novel composite core carrier is sufficiently radiopaque and can be distinguished from gutta-percha. Conclusions: The PE-HA-SrO composites were successfully melt processed into composite core carriers for delivering gutta-percha into the root canal space.
For a given loading, the stiffness of a plate or shell structure can be increased significantly by the addition of ribs or stiffeners. Hitherto, the optimization techniques are mainly on the sizing of the ribs. The more important issue of identifying the optimum location of the ribs has received little attention. In this investigation, finite element analysis has been achieved for the determination of the optimum locations of the ribs for a given set of design constraints. In the conclusion, the author underlines the optimum positions of the ribs or stiffeners which give the best results.
In this paper, a methodology is presented for determining the stress and strain in structural concrete sections, also, for estimating the ultimate combination of axial forces and bending moments that produce failure. The structural concrete member may have a cross-section with an arbitrary configuration, the concrete region may consist of a set of subregions having different characteristics (i.e., different grades of concretes, or initially identical, but working with different stress-strain diagrams due to the effect of indirect reinforcement or the effect of confinement, etc.). This methodology is considering the tensile strain softening and tension stiffening of concrete in additio
Obiovisly that the holy thresholds are directly related to Islam and Muslims and related to the general culture of the Islamic peoples. In terms of architecture, it is considered a distinctive architectural scene that reviews the history of this origin and its architectural styles. Recently, with the increase in the number of pilgrims and visitors to the holy shrines, there is a need to develop and expand the buildings and provide them with services and introduce modern technology. The building of the holy thresholds consists of a number of functional design indicators: The general problem of research is that there is no clear theoretical framework for the design indicators for the development of the holy shrines according to the functio
... Show MoreIncreased downscaling of CMOS circuits with respect to feature size and threshold voltage has a result of dramatically increasing in leakage current. So, leakage power reduction is an important design issue for active and standby modes as long as the technology scaling increased. In this paper, a simultaneous active and standby energy optimization methodology is proposed for 22 nm sub-threshold CMOS circuits. In the first phase, we investigate the dual threshold voltage design for active energy per cycle minimization. A slack based genetic algorithm is proposed to find the optimal reverse body bias assignment to set of noncritical paths gates to ensure low active energy per cycle with the maximum allowable frequency at the optimal supply vo
... Show MoreRecently, the development of the field of biomedical engineering has led to a renewed interest in detection of several events. In this paper a new approach used to detect specific parameter and relations between three biomedical signals that used in clinical diagnosis. These include the phonocardiography (PCG), electrocardiography (ECG) and photoplethysmography (PPG) or sometimes it called the carotid pulse related to the position of electrode.
Comparisons between three cases (two normal cases and one abnormal case) are used to indicate the delay that may occurred due to the deficiency of the cardiac muscle or valve in an abnormal case.
The results shown that S1 and S2, first and second sound of the
... Show MoreThe development of advanced lithium-sulfur (Li-S) batteries has gathered noteworthy attention due to their high theoretical energy density and potential for use in next-generation energy storage systems. This study focuses on the thermodynamic and dynamic analysis of advanced Li-S battery electrolytes using spectroscopic methods. By employing techniques such as nuclear magnetic resonance (NMR), Raman spectroscopy, and infrared (IR) spectroscopy, the research explores the interaction mechanisms between lithium ions and sulfur compounds within various electrolyte formulations. The results provide insights into the solvation structures, ion transport properties, and the stability of intermediates, which are significant for improving th
... Show MoreSliding Mode Controller (SMC) is a simple method and powerful technique to design a robust controller for nonlinear systems. It is an effective tool with acceptable performance. The major drawback is a classical Sliding Mode controller suffers from the chattering phenomenon which causes undesirable zigzag motion along the sliding surface. To overcome the snag of this classical approach, many methods were proposed and implemented. In this work, a Fuzzy controller was added to classical Sliding Mode controller in order to reduce the impact chattering problem. The new structure is called Sliding Mode Fuzzy controller (SMFC) which will also improve the properties and performance of the classical Sliding Mode control
... Show MoreThis research aims to identify the cognitive distortion of kindergarten children and its relationship to their parenting reinforcement. The researcher used the descriptive approach, being the closest to reaching the study objectives, To measure the relationship between the research variables, the researcher prepared two questionnaire tools for this purpose, the first for measuring "cognitive distortion", And the second is to measure "parental reinforcement", and each tool consisted of (20) items.
After ensuring the validity and reliability of the two research tools and their suitabi
... Show More