Introduction: Carrier-based gutta-percha is an effective method of root canal obturation creating a 3-dimensional filling; however, retrieval of the plastic carrier is relatively difficult, particularly with smaller sizes. The purpose of this study was to develop composite carriers consisting of polyethylene (PE), hydroxyapatite (HA), and strontium oxide (SrO) for carrier-based root canal obturation. Methods: Composite fibers of HA, PE, and SrO were fabricated in the shape of a carrier for delivering gutta-percha (GP) using a melt-extrusion process. The fibers were characterized using infrared spectroscopy and the thermal properties determined using differential scanning calorimetry. The elastic modulus and tensile strength tests were determined using a universal testing machine. The radiographic appearance was established using digital periapical radiographs. Results: The composite core carrier exhibited a melting point of 111°C to 112°C, which would facilitate removal by heat application. The elastic modulus and the tensile strength were found to be lower than those of Thermafil carriers (Dentsply Tulsa Dental, Tulsa, OK). The preliminary radiographic evaluation showed that the novel composite core carrier is sufficiently radiopaque and can be distinguished from gutta-percha. Conclusions: The PE-HA-SrO composites were successfully melt processed into composite core carriers for delivering gutta-percha into the root canal space.
Objectives. This study was carried out to quantitatively evaluate and compare the sealing ability of Endoflas by using differentobturation techniques. Materials and Methods. After 42 extracted primary maxillary incisors and canines were decoronated, theircanals were instrumented with K files of size ranging from #15 to #50. In accordance with the obturation technique, the sampleswere divided into three experimental groups, namely, group I: endodontic pressure syringe, group II: modified disposable syringe,and group III: reamer technique, and two control groups. Dye extraction method was used for leakage evaluation. Data wereanalyzed using one-way ANOVA and Dunnett’s T3 post hoc tests. The level of significance was set at p<0:05. Results.
... Show MoreA graphene-based supercapacitors (SC) were manufactured. The main objective of this research was to use as possible as environmentally, clean and natural materials for the SC electrodes, electrolytes and the separators. The SC consisted of a multi-layer graphene (MLG); as the electrode material, prepared by mixing graphene powder with water/acetone mixture, then the solution deposited on metal foils (aluminum and copper) by chemical spray technique, which is a simple and inexpensive technique to prepare the MLG films. The spraying time was (2 and 4 minutes) for making two MLG films with different thicknesses. The electrolytes were used is (lemon juice, table salt dissolved in water, and distillated water). The separators were a commercia
... Show MoreThe meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when
... Show MoreThe Internet of Things (IoT) technology and smart systems are playing a major role in the advanced developments in the world that take place nowadays, especially in multiple privilege systems. There are many smart systems used in daily human life to serve them and facilitate their tasks, such as alarm systems that work to prevent unwanted events or face detection and recognition systems. The main idea of this work is to capture live video using a connected Pi camera, save it, and unlock the electric strike door in several ways; either automatically by displaying a live video connected via USB webcam using a deep learning algorithm of facial recognition and OpenCV or by RFID technology, as well as by detecting abnormal entrance wit
... Show MoreLaser is a powerful device that has a wide range of applications in fields ranging from materials science and manufacturing to medicine and fibre optic communications. One remarkable
The pilgrimage takes place in several countries around the world. The pilgrimage includes the simultaneous movement of a huge crowd of pilgrims which leads to many challenges for the pilgrimage authorities to track, monitor, and manage the crowd to minimize the chance of overcrowding’s accidents. Therefore, there is a need for an efficient monitoring and tracking system for pilgrims. This paper proposes powerful pilgrims tracking and monitoring system based on three Internet of Things (IoT) technologies; namely: Radio Frequency Identification (RFID), ZigBee, and Internet Protocol version 6 (IPv6). In addition, it requires low-cost, low-power-consumption implementation. The proposed