The present study investigated the use of pretreated fish bone (PTFB) as a new surface, natural waste and low-cost adsorbent for the adsorption of Methyl green (MG, as model toxic basic dye) from aqueous solutions. The functional groups and surface morphology of the untreated fish bone (FB) and pretreated fish bone were characterized using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS),respectively. The effect of operating parameters including contact time, pH, adsorbent dose, temperature, and inorganic salt was evaluated. Langmuir, Freundlich and Temkin adsorption isotherm models were studied and the results showed that the adsorption of basic dye followed Freundlich isotherm. Kinetic modeling of the data at different temperatures confirmed pseudo-second-order(P-2-O) model, along with calculated thermodynamic parameters depicted that the adsorption process is spontaneous and endothermic in nature. Diffusion studies suggested that intra-particle diffusion is not the singular rate- ontrolling factor. The results indicated that 92% of MG capable of being sequestered under optimum adsorption conditions: pH 10.64, adsorbent dose 0.1 g/L, and 60 min contact time. Finally, the results showed that the pretreated fish bone can be effectively used as a proper adsorbent for the adsorption of cationic dye from aqueous solutions.
A new copolymer (MFA) was prepared from condensation of melamine (M) with p- methyl – anisole (A) in the presence of condensation agent like 37% (w/v) of formaldehyde. The new copolymer was characterized by elemental, IR and HNMR spectra. The chelating ion-exchange property of this polymer was studied for methylene blue dye in aqueous solution in 100-200ppm concentrations. The adsorption study was carried out over a wide range of pH, shaking time and in media of various kinetic parameters models. Thermal parameters like enthalpy, entropy and Gibbs free energy of adsorption process of methylene blue on surface of MFA resin were determined on the basis of kinetic parameters at different temperatures. To describe the equilibrium of adsorp
... Show MoreIn this work, the adsorption of crystal violet dye from aqueous solution on charcoal and rice husk has been investigated, where the impact of variable factors (contact time; the dosage of adsorbent, pH, temperature, and ionic strength) have been studied. It has been found that charcoal and rice husk have an appropriate adsorption limit with regards to the expulsion of crystal violet dye from fluid arrangements. The harmony adsorption is for all intents and purposes accomplished in 45 min for charcoal and 60 min for rice husk. The amount of crystal violet dye adsorbed (0.4 g of charcoal and 0.5 g of rice husk) increased with an increasing pH and the value of 11 is the best
... Show MoreIn this research a local adsorbent was prepared from waste tires using two-step pyrolysis method. In the carbonization process, nitrogen gas flow rate was 0.2L/min at carbonization temperature of 500ºC for 1h. The char products were then preceded to the activation process at 850°C under carbon dioxide (CO2) activation flow rate of 0.6L/min for 3h. The activation method produced local adsorbent material with a surface area and total pore volume as high as 118.59m2 /g and 0.1467cm3/g, respectively. The produced . local adsorbent (activated carbon) was used for adsorption of lead from aqueous solution. The continuous fixed bed column experiments were conducted. The adsorption capacity performance of prepared activated carbons in this work
... Show MoreTitanium oxide nanoparticles-modified smectite (SMC-nTiO2) as a low-cost adsorbent was investigated for the removal of Rhodamine B (RhB) from aqueous solutions. The adsorbents (SMC and SMC-nTiO2) were characterized by scanning electron microscopy, Fourier transforms infrared spectroscopy, and energy-dispersive X-ray spectroscopy. The effects of various parameters like contact time, adsorbent weight, pH, and temperatures were examined. Three kinetic equations (pseudo-first-order (PFO), pseudo-second-order (PSO), and intra-particle diffusion) were used to evaluate the experimental kinetic of the data and the results showed that the adsorption process is in line with the PSO kinetic model. Adsorption equilibrium isotherms were modeled using La
... Show MoreAlbizia lebbeck biomass was used as an adsorbent material in the present study to remove methyl red dye from an aqueous solution. A central composite rotatable design model was used to predict the dye removal efficiency. The optimization was accomplished under a temperature and mixing control system (37?C) with different particle size of 300 and 600 ?m. Highest adsorption efficiencies were obtained at lower dye concentrations and lower weight of adsorbent. The adsorption time, more than 48 h, was found to have a negative effect on the removal efficiency due to secondary metabolites compounds. However, the adsorption time was found to have a positive effect at high dye concentrations and high adsorbent weight. The colour removal effi
... Show MoreAn experimental study was conducted with low cost natural waste adsorbent materials, barley husks and eggshells, for the removal of Levofloxacine (LEVX) antibacterial from synthetic waste water. Batch sorption tests were conducted to study their isothermal adsorption capacity and compared with conventional activated carbon which were, activated carbon > barley husks > eggshells with removal efficiencies 74, 71 and 42 % with adsorbents doses of 5, 5 and 50 g/L of activated carbon, barley husks, and eggshells respectively. The equilibrium sorption isotherms had been analyzed by Langmuir, Freundlich, and Sips models, and their parameters were evaluated. The experimental data were correlated well with the Langmuir model which gives the
... Show MoreThe azo dye brilliant reactive red K-2BP (λmax = 534 nm) is widely used for coloring textiles because of its low-cost and tolerance fastness properties. Wastewaters treatment that contains the dye by conventional ways is usually inadequate due to its resistance to biological and chemical degradation. During this study, the continuous reactor of an advanced oxidation method supported the use of H2O2/sunlight, H2O2/UV, H2O2/TiO2/sunlight, and H2O2/TiO2/UV for decolorization of brilliant reactive red dye from the effluent. The existence of an optimum pH, H2O2 concentration, TiO2 concentration, and d
... Show More