Preferred Language
Articles
/
iOYRaJwBmraWrQ4d6EmH
Experimental parametrical study of sectioned tilted tubular solar still equipped with hydrogel
...Show More Authors

Solar distillers are a sustainable and simple solution for addressing water scarcity, but their limited productivity restricts their effectiveness. This work aimed to assess the thermal performance of a novel tracked, tilted, hexagonal tubular solar still (HTSS) of four-sectioned U-channel receiver. Two identical HTSSs were side-to-side tested in Baghdad-Iraq (33.3°N, 43.3°E) from June to September 2024. The thermal evaluation of single-axis tracking solar still, tilted at (5° to 15°) with the horizontal axis and charged with and without hydrogel beads for water depth of 60 mm. The still's thermal performance is assessed by analyzing heat transfer coefficients, energy and exergy efficiencies, as well as conducting cost and environmental impact analyses. A considerable improvement in still yield is achieved as hydrogel is charged in. Results showed that the still thermal efficiency is uplifted by (87.79, 96.24, and 108.26 %) for (2000, 4000, and 6000 beads), respectively, as the tilt angle increases from 5° to 15°. It was found that the present still (with 6000 hydrogel beads, and tilted at 15°) has the best thermal and exergy efficiencies and produces 16.72 l/m2, accompanied by 9.91 ton/year emission reduction of CO2, with a competitive cost for water production of 0.039 $/liter.

Scopus Crossref
View Publication
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Experimental and Theoretical Study of Neomycin Sulfate as Corrosion Protection for Titanium in Acid Media
...Show More Authors

        The experimental and theoretical methods were studied for inhibition of the corrosion titanium in HCl by using neomycin sulfate drug. The results of neomycin sulfate drug had good corrosion protection for titanium in hydrochloric acid and the inhibition efficiency (%IE) increasing with increasing concentration of drug because the neomycin sulfate drug had adsorption from acid solution on surface of titanium metal. The program of hyperchem-8.07 was used for theoretical study of the drug by molecular mechanics and semi-empirical calculations. Quantum chemical was studied drug absorption and electron transferred from the drug to the Titanium metal, also inhibition potentials of drug attachment with the (LUMO-HOMO) energy gap,

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Clarivate Crossref
Publication Date
Fri Sep 02 2022
Journal Name
Frontiers In Built Environment
Thermal analysis of horizontal earth-air heat exchangers in a subtropical climate: An experimental study
...Show More Authors

The earth-air heat exchanger (EHX) has a promising potential to passively save the energy consumption of traditional air conditioning systems while maintaining a high degree of indoor comfort. The use of EHX systems for air conditioning in commercial and industrial settings offers several environmental benefits and is capable of operating in both standalone and hybrid modes. This study tests the performance and effectiveness of an EHX design in a sandy soil area in Baghdad, Iraq. The area has a climate of the subtropical semi-humid type. Ambient air temperatures and soil temperatures were recorded throughout the months of 2021. During the months of January and June, the temperatures of the inlet and outflow air at varying air veloci

... Show More
View Publication
Scopus (13)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
New Solar Thermal Materials
...Show More Authors

A number of ehemical ion materials were used as an absorber against solar energy. These materials were selected according to their absorption spectra in the wavelength range 300-800nm where the solar spectrum is coventrated. A solar olleetorw^esigd and The ability of each material inside the collector for absorbing the solar radiation was examined by a converter parameter “R”.According to the “R” parameter, the cohaltous and copperic ions material seems to be of higher capability for absorbing solar energy than the other materials.All the results were analyzed by means of a least-squared fitting program.

View Publication Preview PDF
Crossref
Publication Date
Sun Nov 26 2017
Journal Name
Journal Of Engineering
Numerical Study of Heat Transfer Enhancement for a Flat Plate Solar Collector by Adding Metal Foam Blocks
...Show More Authors

Numerical study has been conducted to investigate the thermal performance enhancement of flat plate solar water collector by integrating the solar collector with metal foam blocks.The flow is assumed to be steady, incompressible and two dimensional in an inclined channel. The channel is provided with eight foam blocks manufactured form copper. The Brinkman-Forchheimer extended Darcy model is utilized to simulate the flow in the porous medium and the Navier-Stokes equation in the fluid region. The energy equation is used with local thermal equilibrium (LTE) assumption to simulate the thermofield inside the porous medium. The current investigation covers a range of solar radiation intensity at 09:00 AM, 12:00 PM, and 04:00

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Parametric Study of Active Solar Heating Using a Pebble Bed as a Thermal Collector and Storage Unit
...Show More Authors

In this study, pebble bed as an absorber and storage material was placed in a south facing, flat plate air-type solar collector at fixed tilt angle of (45°). The effect of this material and differ- ent parameters on collector efficiency has been investigated experimentally and
theoretically. Two operation modes were employed to study the performance of the solar air heater. An inte- grated mode of continuous operation of the system during the period of (11:00 am – 3:00 pm) and non-integrated mode in which the system stored the solar energy through the day then used the stored energy during the period of (3:00 pm – 8:00 pm). The results of parametric study in case of continuous operating showed that the maximum average temperatur

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Mar 15 2019
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Theoretical Study of the Energy Flow of a Two Stages Four Generators Adsorption Chiller
...Show More Authors

This work is concerned with a two stages four beds adsorption chiller utilizing activated carbon-methanol adsorption pair that operates on six separated processes. The four beds that act as thermal compressors are powered by a low grade thermal energy in the form of hot water at a temperature range of 65 to 83 °C.  As well as, the water pumps and control cycle consume insignificant electrical power. This adsorption chiller consists of three water cycles. The first water cycle is the driven hot water cycle. The second cycle is the cold water cycle to cool the carbon, which adsorbs the methanol. Finally, the chilled water cycle that is used to overcome the building load. The theoretical results showed that average cycle cooling power

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Mar 03 2022
Journal Name
Arabian Journal For Science And Engineering
Experimental Study of Cuttings Transport Efficiency of Low Solid Bentonite Drilling Fluids Modified by Cellulose Nanoparticles
...Show More Authors

Advancements in horizontal drilling technologies are utilized to develop unconventional resources, where reservoir temperatures and pressures are very high. However, the flocculation of bentonite in traditional fluids at high temperature and high pressure (HTHP) environments can lower cuttings transportation efficiency and even result in problems such as stuck pipe, decreased rate of penetration (ROP), accelerated bit wear, high torque, and drag on the drill string, and formation damage. The major purpose of the present research is to investigate the performance of low bentonite content water-based fluids for the hole cleaning operation in horizontal drilling processes. Low bentonite content water-based drilling fluids were formulated by re

... Show More
Crossref (7)
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
American Institute Of Physics
Fabrication of AgInSe2 heterojunction solar cell
...Show More Authors

Abstract. Silver, Indium Selenium thin film with a thickness (5001±30) nm, deposited by thermal evaporation methods at RT and annealing3temperature (Ta=400, 500 and 600) K on a substrate of glass to study structural and optical properties of thin films and on p-Si wafer to fabricate the AgInSe2/p-Si heterojunction solar cell. XRD analysis shows that the AgInSe2 (AIS) deposited film at RT and annealing3temperature (Ta=400, 500 and 600) K have polycrystalline structure. The average grain size has been estimated from AFM images. The energy gap was estimated from the optical transmittance using a spectrometer type (UV.-Visible 1800 spectra photometer). From I-V characterization , the photovoltaic parameters such as, open-circuit voltage, short

... Show More
Preview PDF
Scopus (5)
Scopus
Publication Date
Sat Jan 12 2013
Journal Name
International Journal Of Advanced Research In Engineering And Technology (ijaret)
FABRICATION OF AGAL/SI SOLAR CELL
...Show More Authors

The structural, optical and photoelectrical properties of fabricated diffusion heterojunction (HJ) solar cell, from n-type c-Si wafer of [400] direction with Boron, has been studied. AgAl alloys was used because of its properties that affect as a good connection materials. TiO2 has been used as a reflecting layer to increase the absorption radiation. The HJ has direct allowed energy gap equal to 3.1 eV. The c-Si/B HJ solar cell yielded has an active area conversion efficiency of 16.4% with an open circuit voltage of (Voc) 0.592V, short circuit current (Isc) of 2.042mA, fill factor (F.F) of 0.682 and % =10.54.

Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Fabrication of multi-junction solar cells
...Show More Authors

Fabrication of solar cell prepared by thermal spray and vacuum thermal evaporation method on silicon wafer(n-type) and studying its efficiency. The film have been deposited on three layers(ZnO then CdS and CdTe) on Si and glass respectively.Direct energy gap was calculated and equal to (4.3,3.4,3)eV and indirect energy gap equal to (3.5,2.5,1.5)eV respectively . Efficiency was calculated for the cell of area 2cm2 it was equal to 0.14%.

View Publication Preview PDF
Crossref