The dual nature of asphalt binder necessitates improvements to mitigate rutting and fatigue since it performs as an elastic material under the regime of rapid loading or cold temperatures and as a viscous fluid at elevated temperatures. The present investigation assesses the effectiveness of Nano Alumina (NA), Nano Silica (NS), and Nano Titanium Dioxide (NT) at weight percentages of 0, 2, 4, 6, and 8% in asphalt cement to enhance both asphalt binder and mixture performance. Binder evaluations include tests for consistency, thermal susceptibility, aging, and workability, while mixture assessments focus on Marshall properties, moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics. NS notably improves binder viscosity by about 138% and reduces penetration by approximately 40.8% at 8% nanomaterial (NM) content, significantly boosting hardness and consistency. NS also enhances Marshall stability and decreases air voids, increasing the mix’s durability. For moisture resistance, NS at 8% NM content elevates the Tensile Strength Ratio (TSR) to 91.0%, substantially surpassing the 80% standard. Similarly, NA and NT also show improved TSR values at 8% NM content, with 88.0% and 84.1%, respectively. Additionally, NS, NA, and NT reduce permanent deformation by 82%, 69%, and 64% at 10,000 cycles at 8% NM content, illustrating their effectiveness in mitigating pavement distress. Notably, while higher NM content generally results in better performance across most tests, the optimal NM content for fatigue resistance is 4% for NS and 6% for both NA and NT, reflecting their peak performance against various types of pavement distresses. These results highlight the significant advantages of nanoparticles in improving asphalt’s mechanical properties, workability, stability, and durability. The study recommends further field validation to confirm these laboratory findings and ensure that enhancements translate into tangible improvements in real-world pavement performance and longevity.
Phytophagous stink bugs (Hemiptera, Pentatomidae) are economically important insect pests of fruit, vegetable, nut and field crops. This study was carried out during the season of 2013 in orchards within Erbil city, to follow the stink bug Mustha spinulosa (Lefebvre, 1831) seasonal fluctuation on some fruit trees: olive, plum, apricot, pear, apple and almond.
The stink bug reaches its maximum abundance throughout the second week of August (38.2/tree) coinciding with mean temperature and relative humidity of 33.40C and 28.14% respectively, and the highest total mean of the number of the insect was recorded on the olive trees (181.8/tree). The study reveals that the stink bug attacked 22 trees (fruit and forest) while it has not atta
Flame atomic absorption spectrophotometer (FAAS) was used in this study to determine the concentrations of heavy metals such as Ca, Fe, Mn, Cd, Co, Cr, Ni, Cu, Pb and Zn in some food additives of Iraq. The order of metal contents in food additives was found to be Ca ˃ Mn ˃ Fe ˃ Cu ˃ Zn ˃ Pb ˃ Cr ˃ Ni ˃ Co ˃ Cd. The concentration level of each metal was compared with that recommended by food agriculture organisation (FAO) and world health organisation (WHO). Calibration curves were linear for all standard solutions of heavy metals in the range starting from 0.02-0.4 mg/kg for Cd to 11-100 mg/kg for Ca. The correlation coefficients values (R2) of calibrations were investigated and ranged from 0.9971 for Cr to 0.9999 for Ca. Th
... Show MoreAs a result of rapid industrialization and population development, toxic chemicals have been introduced into water systems in recent decades. Because of its excellent efficiency and simple design, the three-dimensional (3D) electro-Fenton method has been used for the treatment of wastewater. The goal of the current study is to explore the efficiency of phenol removal by the 3D electro-Fenton process, which is one of the advanced oxidation processes (AOPs). In the present work, the effect of the addition of granular activated carbon (GAC) particles to the electro-Fenton system as the third electrode would be investigated in the presence of graphite as the anode and nickel foam as the cathode, which is the source of electro-generated hydrogen
... Show MoreRestoration of degraded lands by adoption of recommended conservation management practices can rehabilitate watersheds and lead to improving soil and water quality. The objective was to evaluate the effects of grass buffers (GBs), biomass crops (BCs), grass waterways (GWWs), agroforestry buffers (ABs), landscape positions, and distance from tree base for AB treatment on soil quality compared with row crop (RC) (corn [
Abstract
Objective(s): To determine the interventional program effectiveness on nurses' practices concerning diet instructions for orthopedic patients treated by internal fixation devices.
Methodology: A quantitative approach using prexperimental design is conducted to determine the effectiveness of an interventional program on nurses’ practices regarding orthopedic patients diet instruction and teaching after internal fixation implemented. The study has started from 1st of April 2022 and ended on 15th of December, 2022. The conduction of the study in Misan governorate / Al-Zaharawy surgical hospital. A non-probability, purpo
... Show MoreObjective: The study aimed to identify the adolescents' family meal eating patterns, and find out the relationship between adolescents' family meal eating patterns and their weight control behaviors. Methodology: A descriptive study was conducted on impact of adolescents' family meal eating patterns upon their weight control behaviors in secondary schools at Baghdad city, starting from 20th of April 2013 to the end of October 2014. Non- probability (purposive) sample of 1254 adolescents were chosen from secondary schools of both sides of Al-Karkh and Al-Russafa sectors. Data was collected through a specially
Abstract
The study of oxygen mass transfer was conducted in a laboratory scale 5 liter stirred bioreactor equipped with one Rushton turbine impeller. The effects of superficial gas velocity, impeller speed, power input and liquid viscosity on the oxygen mass transfer were considered. Air/ water and air/CMC systems were used as a liquid media for this study. The concentration of CMC was ranging from 0.5 to 3 w/v. The experimental results show that volumetric oxygen mass transfer coefficient increases with the increase in the superficial gas velocity and impeller speed and decreases with increasing liquid viscosity. The experimental results of kla were correlated with a mathematical correlation des
... Show More