Preferred Language
Articles
/
iBivZ5UBVTCNdQwCyi1W
Experimental Study to Investigate the Performance-Related Properties of Modified Asphalt Concrete Using Nanomaterials Al2O3, SiO2, and TiO2
...Show More Authors

The dual nature of asphalt binder necessitates improvements to mitigate rutting and fatigue since it performs as an elastic material under the regime of rapid loading or cold temperatures and as a viscous fluid at elevated temperatures. The present investigation assesses the effectiveness of Nano Alumina (NA), Nano Silica (NS), and Nano Titanium Dioxide (NT) at weight percentages of 0, 2, 4, 6, and 8% in asphalt cement to enhance both asphalt binder and mixture performance. Binder evaluations include tests for consistency, thermal susceptibility, aging, and workability, while mixture assessments focus on Marshall properties, moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics. NS notably improves binder viscosity by about 138% and reduces penetration by approximately 40.8% at 8% nanomaterial (NM) content, significantly boosting hardness and consistency. NS also enhances Marshall stability and decreases air voids, increasing the mix’s durability. For moisture resistance, NS at 8% NM content elevates the Tensile Strength Ratio (TSR) to 91.0%, substantially surpassing the 80% standard. Similarly, NA and NT also show improved TSR values at 8% NM content, with 88.0% and 84.1%, respectively. Additionally, NS, NA, and NT reduce permanent deformation by 82%, 69%, and 64% at 10,000 cycles at 8% NM content, illustrating their effectiveness in mitigating pavement distress. Notably, while higher NM content generally results in better performance across most tests, the optimal NM content for fatigue resistance is 4% for NS and 6% for both NA and NT, reflecting their peak performance against various types of pavement distresses. These results highlight the significant advantages of nanoparticles in improving asphalt’s mechanical properties, workability, stability, and durability. The study recommends further field validation to confirm these laboratory findings and ensure that enhancements translate into tangible improvements in real-world pavement performance and longevity.

Scopus Clarivate Crossref
Publication Date
Mon Sep 30 2019
Journal Name
College Of Islamic Sciences
Show fate to the people of Badr By Ibrahim ibn Hasan al-Kurani (1025-1101 AH): Study, investigate and comment
...Show More Authors

It is the grace of God and his grace that he accepts repentance for his slaves, forgives their bad deeds in return for their misfortune, or offers them a good deed, but pardons many of them for free. Therefore, it is not long for God Almighty to forgive His mercy for many of His slaves and bring them to Paradise with no punishment or punishment, even if they have committed some sins, because of the multitude of their favorable navigational disadvantages, or even without gratitude thanks to him and him. With all this, some have overlooked the old and new on these things and amazed at the hadeeth ((God may have seen the people of the full moon and said do what you want, I have forgiven you)). Therefore, the scholars tried to answer some of

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 05 2021
Journal Name
Kufa Journal Of Engineering
IMPROVEMENT OF MARSHALL PROPERTIES FOR HOT MIX ASPHALT BY USING CERAMIC FIBER
...Show More Authors

Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Influence of Aging Time on Asphalt Pavement Performance
...Show More Authors

Aging of asphalt pavements typically occurs through oxidation of the asphalt and evaporation of the lighter maltenes from the binder. The main objective of this study is to evaluate influence of aging on performance of asphalt paving materials.nAsphalt concrete mixtures, were prepared, and subjected to short term aging (STA) procedure which involved heating the loose mixtures in an oven for two aging period of (4 and 8) hours at a temperature of 135 o C. Then it was subject to Long term aging (LTA) procedure using (2 and 5) days aging periods at 85 o C for Marshall compacted specimens. The effect of aging periods on properties of asphalt concrete at optimum asphalt content such as Marshall Properties, indirect tensile strength at 25 o C,

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Engineering
The Effect of Cement and Admixture Types on the Resistance of High Performance Concrete to Internal Sulphate Attack
...Show More Authors

This work is concerned with the study of the effect of cement types, particularly OPC and SRPC, which are the main cement types manufactured in Iraq. In addition, study the effect of mineral admixtures, which are HRM and SF on the resistance of high performance concrete (HPC) to internal sulphate attack. The HRM is used at (10%) and SF is used at (8 and 10)% as a partial replacement by weight of cement for both types. The percentages of sulphate investigated are (1,2 and 3)% by adding natural gypsum as a partial replacement by weight of fine aggregate. The tests carried out in this work are: compressive strength, flexural strength, ultrasonic pulse velocity, and density at the age of 7, 28, 90 and 120 days.

The r

... Show More
View Publication Preview PDF
Publication Date
Mon Nov 30 2020
Journal Name
Iraqi Geological Journal
EXPERIMENTAL STUDY OF MICRO SILICA BEHAVIOR AND ITS EFFECT ON IRAQI CEMENT PERFORMANCE BY USING X-RAY FLUORESCENCE ANALYSIS
...Show More Authors

The cement slurry is a mixture of cement, water and additives which is established at the surface for injecting inside hole. The compressive strength is considered the most important properties of slurry for testing the slurry reliability and is the ability of slurry to resist deformation and formation fluids. Compressive strength is governed by the sort of raw materials that include additives, cement structure, and exposure circumstances. In this work, we use micro silica like pozzolanic materials. Silica fume is very fine noncrystalline substantial. Silica fume can be utilized like material for supplemental cementations for increasing the compressive strength and durability of cement. Silica fume has very fine particles size less

... Show More
View Publication
Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Engineering
Evaluating Water Damage Resistance of Recycled Asphalt Concrete Mixtures
...Show More Authors

Recycling process presents a sustainable pavement by using the old materials that could be milled, mixed with virgin materials and recycling agents to produce recycled mixtures. The objective of this study is to evaluate the impact of water on recycled asphalt concrete mixtures, and the effect of the inclusion of old materials into recycled mixtures on the resistance of water damage. A total of 54 Marshall Specimens and 54 compressive strength specimens of (virgin, recycled, and aged asphalt concrete mixtures) had been prepared, and subjected to Tensile Strength Ratio test, and Index of Retained Strength test. Four types of recycling agents (used oil, oil + crumb rubber, soft grade asphalt cement, and asphalt cement + Su

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 01 2025
Journal Name
Cleaner Waste Systems
Performance enhancement of natural asphalt using waste-derived modifiers: Sugarcane molasses and waste engine oil
...Show More Authors

The growing demand for sustainable and high-performance asphalt binders has prompted the exploration of waste-derived modifiers. This study investigates the performance enhancement of Natural Asphalt (NA) using Sugarcane Molasses (SM) and Waste Engine Oil (WEO). The modified blends were prepared by partially replacing 50 % NA with varying proportions of SM and WEO ranging from 10 % to 40 % of the total weight of NA. Comprehensive testing was conducted, including penetration, softening point, ductility, viscosity, Bending Beam Rheometer (BBR), Multiple Stress Creep Recovery (MSCR), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM). The results demonstrated that

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Mar 30 2003
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Physical and Rheological Properties of Class "G" Gilsonite Cement Slurries (Experimental Study)
...Show More Authors

View Publication Preview PDF
Publication Date
Mon Sep 01 2014
Journal Name
Al-khwarizmi Engineering Journal
An Experimental Study of the Effect of Vortex Shedding on Solar Collector Performance
...Show More Authors

In this work, the effect of vortex shedding on the solar collector performance of the parabolic trough solar collector (PTSC) was estimated experimentally. The effect of structure oscillations due to wind vortex shedding on solar collector performance degradation was estimated. The performance of PTSC is evaluated by using the useful heat gain and the thermal instantaneous efficiency. Experimental work to simulate the vortex shedding excitation was done. The useful heat gain and the thermal efficiency of the parabolic trough collector were calculated from experimental measurements with and without vortex loading. The prototype of the collector was fabricated for this purpose. The effect of vortex shedding at different operation condition

... Show More
View Publication Preview PDF
Publication Date
Thu May 01 2025
Journal Name
International Journal Of Engineering
Impact of Using Polyethylene Polymer on Properties of Hot Asphalt Mixture by Conducting Semi-Wet and Dry Mixing Process
...Show More Authors

In recent years, various methods have been developed to enhance the characteristics of asphalt pavement in order to face the continuous challenges of increasing traffic loads and changing climate conditions. One of the most popular and successful methods is modifying the asphalt mixtures or asphalt binder with the addition of polymers. Therefore, two types of Polyethylene (PE) polymer, High-Density PE (HDPE) and Low-Density PE (LDPE), are used in this research. Two methods were applied to prepare PE-modified asphalt mixtures: Semi-Wet Method (S-WM) and Dry Method (DM). The findings of the investigation indicated that the addition of PE polymer can reduce the wear loss of aggregate. In general, the experimental results revealed that asphalt

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref