The growing population and the rising standard of living in cities as well as the increased commercial, industrial and agricultural activities around the world led to
massive production of waste containing different materials and one of them is the municipal solid waste (MSW), so there is a major problem facing the cities around the world about the waste, how to collect, transfer it and how to discard it. Because the accumulation of wastes, whether in the city alleys or in its squares and especially in its residential areas affect the health of their populations besides this situation will be a major indication of the deteriorating quality of life in the city, as hygiene considered a fundamental criterion for the city beauty as well
Objectives: To determine the impact of the household hazardous waste’s aspects upon the environment
pollution .and to identify the relationship between the households’ demographic characteristics and the aspects
of household hazardous waste.
Methodology: A descriptive study is conducted between December 14th 2004 to October 20th 2005that uses of
an assessment tool. A probability (simple random sampling) of (336) principal’s households which is selected
from the zones around the (14) primary health care centers as focal points, (8) in the urban and (6) in the rural
areas of Baghdad Governorate. After reliability and validity were determined Data are collected through the use
of an assessment tool that is consist
Abstract-Industrial and urban development has resulted in the spread of plastic waste and the increase in the emissions of carbon dioxide resulting from the cement manufacturing process. The current research aims to produce green (environmentally friendly) concrete by using plastic waste as coarse aggregates in different proportions (10% and 20%) and nano silica sand powder as an alternative to cement in different proportions (5% and 10% by weight). The results showed that compressive strength decreased by 12.10% and 19.23% for 10% and 20% plastic waste replacement and increased by 12.89% and 20.39% for 5% and 10% silica sand replacement respectively at 28 days. Flexural strength decreased by 12.95% and 19.64% for 10% and 20% plastic waste
... Show MoreOne of the most important environmental issues is the responsible effective and economic treatment of drilling waste especially oily waste.
In this research two fungal isolates named Pleurotus ostreatus and Trichoderma harzianum were chosen for the first time to treat biologically the oily drilled cuttings contaminated with diesel which resulted from drilling oil wells use oil based muds (OBMs).
The results showed that the fungi under study utilized the hydrocarbon of contaminated soil as a source of nutrient and growth and that both fungi can be considered hydrocarbon degrading microorganisms. The used biotreatment is cost effective process since most of the materials used in the cultivation and growth of the present fungi were av
Industrial and urban development has resulted in the spread of plastic waste and the increase in the emissions of carbon dioxide resulting from the cement manufacturing process. The current research aims to produce green (environmentally friendly) concrete by using plastic waste as coarse aggregates in different proportions (10% and 20%) and nano silica sand powder as an alternative to cement in different proportions (5% and 10% by weight). The results showed that compressive strength decreased by 12.10% and 19.23% for 10% and 20% plastic waste replacement and increased by 12.89% and 20.39% for 5% and 10% silica sand replacement respectively at 28 days. Flexural strength decreased by 12.95% and 19.64% for 10% and 20% plastic waste r
... Show MoreA common field development task is the object of the present research by specifying the best location of new horizontal re-entry wells within AB unit of South Rumaila Oil Field. One of the key parameters in the success of a new well is the well location in the reservoir, especially when there are several wells are planned to be drilled from the existing wells. This paper demonstrates an application of neural network with reservoir simulation technique as decision tool. A fully trained predictive artificial feed forward neural network (FFNNW) with efficient selection of horizontal re-entry wells location in AB unit has been carried out with maintaining a reasonable accuracy. Sets of available input data were collected from the exploited g
... Show MorePeroxidase is a class of oxidation-reduction reaction enzyme that is useful for accelerating many oxidative reactions that protect cells from the harmful effects of free radicals. Peroxidase is found in many common sources like plants, animals and microbes and have extensive uses in numerous industries such as industrial, medical and food processing. In this study, P. aeruginosa was harvested to utilize and study its peroxidases. P. aeruginosa was isolated from a burn patient, and the isolate was verified as P. aeruginosa using staining techniques, biochemical assay, morphological, and a sensitivity test. The gram stain and biochemical test result show rod pink gram-ne
... Show MoreA field-pilot scale slow sand filter (SSF) was constructed at Al-Rustamiya Sewage Treatment Plant (STP) in Baghdad city to investigate the removal efficiency in terms of Biochemical Oxygen Demand (BOD5), Chemical oxygen demand (COD), Total Suspended Solids (TSS) and Chloride concentrations for achieving better secondary effluent quality from this treatment plant. The SSF was designed at a 0.2 m/h filtration rate with filter area 1 m2 and total filter depth of 2.3 m. A filter sand media 0.35 mm in size and 1 m depth was supported by 0.2 m layer of gravel of size 5 mm. The secondary effluent from Al-Rustamiya STP was used as the influent to the slow sand filter. The results showed that the removal of BOD5, COD, TSS, and Chloride were
... Show MoreUnderstanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications. Spider silk is tough, but becomes soft when exposed to water. Here we report a strong affinity of amine-functionalised multi-walled carbon nanotubes for spider silk, with coating assisted by a water and mechanical shear method. The nanotubes adhere uniformly and bond to the silk fibre surface to produce tough, custom-shaped, flexible and electrically conducting fibres after drying and contraction. The conductivity of coated silk fibres is reversibly sensitive to strain and humidity, leading to proof-of-concept sensor and actuator demonstrations.