Preferred Language
Articles
/
iBh13ZYBVTCNdQwCAIeY
Synthesis of modified Graphene Oxide and its application as Electrochemical Sensor
...Show More Authors

This study involved preparation of Graphene oxide (GO) and reduced graphene oxide (RGO) using Hummer method and chemical method respectively. These carbon nanomaterials were used as starting material to make novel functionalize with thiocarbohydrazide (TCH) which was prepared by reacting CS2 with hydrazine to form GO or RGO- 4-amino,5-substituted 1H,1,2,4 Triazole 5(4H) thion (ASTT) ,(GOT) and( RGOT) respectively via cyclocondensation reaction. Also MnO2 nanorod was prepared to form hybridized with GOT and RGOT. A commercial multiwall carbon nanotube (MWCNT) and functionalization with carboxylic groups' (f-MWCNT) and its nanocomposite with GOT were also prepared. All carbon nanomaterials were characterized with different techniques such as Fourier transform infrared (FT-IR), X-ray diffraction (XRD), atomic force microscope (AFM) scanning electron microscope (SEM) and elemental analysis. XRD showed presence diffraction peak at 11.95 for GO and this diffraction disappeared for RGO. Diffraction peak of crystal planes for MnO2 matched well with standard data. The diameter of MnO2 nanotubes was determined using Debye scherrer equation and found to be 11.6nm corresponding with AFM image. The AFM images proves the growth of MnO2 nanotubes from the MnO2 nano spherical shape these images are very rare in the scientific literature. The real permittivity (ε'), imaginary permittivity (ε") and a.c conductivity (S.m-1) of all nanomaterials were measured by LCR meter at frequencies ranging from 100Hz to 100 KHz. The result showed the values of the real permittivity for RGO higher than GO at all frequencies while RGOTM have lower values of real permittivity at low frequency due to presence of MnO2 nanorods which affected the accumulation of charges. The imaginary permittivity of f-MWCNT-GOT and RGO were at low frequency higher than the real values due to their high conductivity. Also imaginary permittivity of f-MWCNT-GOT nanocomposites at all frequencies higher than real which have negative values at frequencies in range 400 to 4KHz .a.c conductivity for RGO and f-MWCNT-GOT nanocomposite have higher values compared with all prepared nanomaterial, at the same time the modified WE with f-MWCNT-GOT nanocomposite show the best detection limits in comparison with other prepared modified WE. Also the prepared nanomaterials were used to study novel sensing system and develop electrochemical sensor capable of detecting some of antibiotics such as Ampicillin (AMP), Amoxilline (AMOX) which have β-lactam ring and Tetracycline (TET) which contains four hydrocarbon rings using cyclic voltammetry (CV) technique via modification of the working electrode of the SPCE with the prepared nanomaterial by deposition process. f-MWCNT-GOT/SPCE nanocomposite showed higher electrochemical reaction response and lower limit of detection. The working electrodes surfaces were studied with AFM and SEM techniques. The value of apparent heterogeneous electron transfer rate constant (ks) was determined using the value of electron transfer coefficient (α) and the result showed that f-MWCNT-GOT/SPCE showed higher (ks).

Preview PDF
Quick Preview PDF
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
Synthesis and Fabrication of In2O3: CdO Nanoparticles for NO2 Gas Sensor
...Show More Authors

The physical and morphological characteristics of porous silicon (PS) synthesized via gas sensor was assessed by electrochemical etching for a Si wafer in diluted HF acid in water (1:4) at different etching times and different currents. The morphology for PS wafers by AFM show that the average pore diameter varies from 48.63 to 72.54 nm with increasing etching time from 5 to 15min and from 72.54 to 51.37nm with increasing current from 10 to 30 mA. From the study, it was found that the gas sensitivity of In2O3: CdO semiconductor, against NO2 gas, directly correlated to the nanoparticles size, and its sensitivity increases with increasing operating temperature.

View Publication Preview PDF
Scopus (7)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Mar 04 2018
Journal Name
Baghdad Science Journal
Optical, Structural and Electrical Properties of Electrochemical Synthesis of Thin Film of Polyaniline
...Show More Authors

Polyaniline membranes of aniline were produced using an electrochemical method in a cell consisting of two poles. The effect of the vaccination was observed on the color of membranes of polyaniline, where analysis as of blue to olive green paints. The sanction of PANI was done by FT-IR and Raman techniques. The crystallinity of the models was studied by X-ray diffraction technique. The different electronic transitions of the PANI were determined by UV-VIS spectroscopy. The electrical conductivity of the manufactured samples was measured by using the four-probe technique at room temperature. Morphological studies have been determined by Atomic force microscopy (AFM). The structural studies have been measured by (SEM).

View Publication Preview PDF
Scopus (9)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Environmental Nanotechnology, Monitoring & Management
Synthesis of nano-magnetite and magnetite/synthetic geopolymer nano-porous composite for application as a novel adsorbent
...Show More Authors

In this work magnetite/geopolymer composite (MGP) were synthesized using a chemical co-precipitation technique. The synthesized materials were characterized using several techniques such as: “X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample-magnetometer (VSM), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), Brunauer–Emmett–Teller (BET) and Barrentt-Joyner-Halenda (BJH)” to determine the structure and morphology of the obtained material. The analysis indicated that metal oxide predominantly appeared at the shape of the spinel structure of magnetite, and that the presence of nano-magnetite had a substantial impact on the surface area and pore st

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Sun Mar 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Oxidation of Toluene to Benzoic Acid Catalyzed by Modified Vanadium Oxide
...Show More Authors

A variety of oxides were examined as additives to a V2O5/Al2O3 catalyst in order to enhance the catalytic performance for the vapor phase oxidation of toluene to benzoic acid. It was found that the modification with MoO3 greatly promoted the little reaction leading to improve catalyst performance in terms of toluene conversion and benzoic acid selectivity. The effect of catalyst surface area, catalyst promoters, reaction temperature, O2/toluene, steam/toluene, space velocity, and catalyst composition to catalyst performance were examined in order to increase the benzoic acid selectivity and yield.

View Publication Preview PDF
Publication Date
Fri May 10 2019
Journal Name
Research Journal Of Chemistry And Environment
Solid Phase Extraction of Theophylline in Aqueous Solutions by Modified Magnetic Iron Oxide Nanoparticles as an Extractor Material and Spectrophotometry Technique for the Determination
...Show More Authors

new, simple and fast solid-phase extraction method for separation and preconcentration of trace theophylline in aqueous solutions was developed using magnetite nanoparticles (MIONPs) coated with aluminium oxide (AMIONPs) and modified with palmitate (P) as an extractor (P@AMIONPs). It has shown that the developed method has a fast absorbent rate of the theophylline at room temperature. The parameters that affect the absorbent of theophylline in the aqueous solutions have been investigated such as the amount of magnetite nanoparticle, pH, standing time and the volume, concentration of desorption solution. The linear range, limit of quantification (LOQ) and limit of detection (LOD) for the determination of theophylline were 0.05-2.450 μg mL-

... Show More
View Publication
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Data Aggregation in Wireless Sensor Networks Using Modified Voronoi Fuzzy Clustering Algorithm
...Show More Authors

Data centric techniques, like data aggregation via modified algorithm based on fuzzy clustering algorithm with voronoi diagram which is called modified Voronoi Fuzzy Clustering Algorithm (VFCA) is presented in this paper. In the modified algorithm, the sensed area divided into number of voronoi cells by applying voronoi diagram, these cells are clustered by a fuzzy C-means method (FCM) to reduce the transmission distance. Then an appropriate cluster head (CH) for each cluster is elected. Three parameters are used for this election process, the energy, distance between CH and its neighbor sensors and packet loss values. Furthermore, data aggregation is employed in each CH to reduce the amount of data transmission which le

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 18 2022
Journal Name
Photonic Sensors
Arsenic Detection Using Surface Plasmon Resonance Sensor With Hydrous Ferric Oxide Layer
...Show More Authors
Abstract<p>The lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe<sub>2</sub>H<sub>2</sub>O<sub>4</sub>) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe<sub>2</sub>H<sub>2</sub>O<sub>4</sub> to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb<sup>−1</sup> and 0.922 °·ppb<jats></jats></p> ... Show More
View Publication
Scopus (8)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Journal Of Ovonic Research
Effect of reduced graphene oxide hybridization on ZnO nanoparticles sensitivity to NO2 gas: A DFT study
...Show More Authors

In the present work, a density functional theory (DFT) calculation to simulate reduced graphene oxide (rGO) hybrid with zinc oxide (ZnO) nanoparticle's sensitivity to NO2 gas is performed. In comparison with the experiment, DFT calculations give acceptable results to available bond lengths, lattice parameters, X-ray photoelectron spectroscopy (XPS), energy gaps, Gibbs free energy, enthalpy, entropy, etc. to ZnO, rGO, and ZnO/rGO hybrid. ZnO and rGO show n-type and p-type semiconductor behavior, respectively. The formed p-n heterojunction between rGO and ZnO is of the staggering gap type. Results show that rGO increases the sensitivity of ZnO to NO2 gas as they form a hybrid. ZnO/rGO hybrid has a higher number of vacancies that can b

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Physics: Conference Series
Green Chemistry Synthesis of Modified Silver Nanoparticles
...Show More Authors
Abstract<p>The important aspect of this unconventional approach is that eco-friendly, commercially available and straight forward method was used to prepared Silver Nanoparticles by using AgNO3 and curcumin solution as agent factor. The (TEM), (XRD), and (FTIR) was used to characterise these silver nanoparticles (AgNPs). Two types of bacterial isolates were used to indicate the antibacterial activity silver nanoparticles which prepared by curcumin solution, Gram negative like (Escherichia Coli E. Coli), & Gram positive (Stapha Urous). The results exhibit that silver nanoparticles synthesized by curcumin solution has effective antibacterial activities.</p>
View Publication
Scopus (17)
Crossref (11)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Global Pharma Technology
Modified ZnO for efficient photo-catalysis by Silver/Graphite oxide nanoparticles
...Show More Authors

Scopus (4)
Scopus