Preferred Language
Articles
/
iBfgNY8BVTCNdQwCQmJX
Breaking Knapsack Cipher Using Population Based Incremental Learning
...Show More Authors

Crossref
View Publication
Publication Date
Mon Mar 11 2019
Journal Name
Al-khwarizmi Engineering Journal
An Investigation Study of Tool Geometry in Single Point Incremental Forming (SPIF) and their effect on Residual Stresses Using ANOVA Model
...Show More Authors

Incremental forming is a flexible sheet metal forming process which is performed by utilizing simple tools to locally deform a sheet of metal along a predefined tool path without using of dies. This work presents the single point incremental forming process for producing pyramid geometry and studies the effect of tool geometry, tool diameter, and spindle speed on the residual stresses. The residual stresses were measured by ORIONRKS 6000 test measuring instrument. This instrument was used with four angles of (0º,15º,30º, and 45º) and the average value of residual stresses was determined, the value of the residual stress in the original blanks was (10.626 MPa). The X-ray diffraction technology was used to measure the residual stresses

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu May 01 2008
Journal Name
2008 International Conference On Computer And Communication Engineering
A binary Particle Swarm Optimization for attacking knapsacks Cipher Algorithm
...Show More Authors

View Publication
Scopus (10)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Proposed A Permutation and Substitution Methods of Serpent Block Cipher
...Show More Authors

     Block cipher technique is one of cryptography techniques to encrypt data block by block. The Serpent is one of AES candidates. It encrypts a 128-bit block by using 32 rounds of a similar calculation utilizing permutations and substitutions. Since the permutations and substitutions of it are static. Then this paper proposes dynamic methods for permutation, substitution and key generation based on chaotic maps to get more security. The proposed methods are analyzed and the results showed that they were able to exceed the weakness resulting from the use of static permutations and substitutions boxes in the original algorithm and also can reduce number of rounds and time usage compared with a classical Serpent block

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Aug 30 2018
Journal Name
Iraqi Journal Of Science
Construct a New System as a Combining Function for the LFSR in the Stream Cipher Systems Using Multiplicative Cyclic Group
...Show More Authors

In this paper, we construct a new mathematical system as Multiplicative Cyclic Group (MCG), called a New Digital Algebraic Generator (NDAG) Unit, which would generate digital sequences with good statistical properties. This new Unit can be considered as a new basic unit of stream ciphers.

A (NDAG) system can be constructed from collection of (NDAG) units using a Boolean function as a combining function of the system. This system could be used in cryptography as like as Linear Feedback Shift Register (LFSR) unit. This unit is basic component of  a stream cipher system.

View Publication Preview PDF
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
Iraqi Sentiment and Emotion Analysis Using Deep Learning
...Show More Authors

Analyzing sentiment and emotions in Arabic texts on social networking sites has gained wide interest from researchers. It has been an active research topic in recent years due to its importance in analyzing reviewers' opinions. The Iraqi dialect is one of the Arabic dialects used in social networking sites, characterized by its complexity and, therefore, the difficulty of analyzing sentiment. This work presents a hybrid deep learning model consisting of a Convolution Neural Network (CNN) and the Gated Recurrent Units (GRU) to analyze sentiment and emotions in Iraqi texts. Three Iraqi datasets (Iraqi Arab Emotions Data Set (IAEDS), Annotated Corpus of Mesopotamian-Iraqi Dialect (ACMID), and Iraqi Arabic Dataset (IAD)) col

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Image Compression Using Deep Learning: Methods and Techniques
...Show More Authors

     In recent years images have been used widely by online social networks providers or numerous organizations such as governments, police departments, colleges, universities, and private companies. It held in vast databases. Thus, efficient storage of such images is advantageous and its compression is an appealing application. Image compression generally represents the significant image information compactly with a smaller size of bytes while insignificant image information (redundancy) already been removed for this reason image compression has an important role in data transfer and storage especially due to the data explosion that is increasing significantly. It is a challenging task since there are highly complex unknown correlat

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (5)
Scopus Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Arabic Sentiment Analysis (ASA) Using Deep Learning Approach
...Show More Authors

Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l

... Show More
View Publication Preview PDF
Crossref (18)
Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Building a High Accuracy Transfer Learning-Based Quality Inspection System at Low Costs
...Show More Authors

      Products’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.       In this research, we pr

... Show More
Preview PDF
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu Jun 06 2024
Journal Name
Journal Of Applied Engineering And Technological Science (jaets)
Deep Learning and Its Role in Diagnosing Heart Diseases Based on Electrocardiography (ECG)
...Show More Authors

Diagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad

... Show More
View Publication
Scopus Crossref