Preferred Language
Articles
/
iBd9RI8BVTCNdQwCy2jb
Advances in Document Clustering with Evolutionary-Based Algorithms

Document clustering is the process of organizing a particular electronic corpus of documents into subgroups of similar text features. Formerly, a number of conventional algorithms had been applied to perform document clustering. There are current endeavors to enhance clustering performance by employing evolutionary algorithms. Thus, such endeavors became an emerging topic gaining more attention in recent years. The aim of this paper is to present an up-to-date and self-contained review fully devoted to document clustering via evolutionary algorithms. It firstly provides a comprehensive inspection to the document clustering model revealing its various components with its related concepts. Then it shows and analyzes the principle research work in this topic. Finally, it compiles and classifies various objective functions, the core of the evolutionary algorithms, from the related collection of research papers. The paper ends up by addressing some important issues and challenges that can be subject of future work.

Scopus Crossref
View Publication
Publication Date
Thu Nov 29 2018
Journal Name
Iraqi Journal Of Science
Improving Extractive Multi-Document Text Summarization Through Multi-Objective Optimization

Multi-document summarization is an optimization problem demanding optimization of more than one objective function simultaneously. The proposed work regards balancing of the two significant objectives: content coverage and diversity when generating summaries from a collection of text documents.

     Any automatic text summarization system has the challenge of producing high quality summary. Despite the existing efforts on designing and evaluating the performance of many text summarization techniques, their formulations lack the introduction of any model that can give an explicit representation of – coverage and diversity – the two contradictory semantics of any summary. In this work, the design of

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Advances On Computational Intelligence In Energy
A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption

Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo

... Show More
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Finding Best Clustering For Big Networks with Minimum Objective Function by Using Probabilistic Tabu Search

     Fuzzy C-means (FCM) is a clustering method used for collecting similar data elements within the group according to specific measurements. Tabu is a heuristic algorithm. In this paper, Probabilistic Tabu Search for FCM implemented to find a global clustering based on the minimum value of the Fuzzy objective function. The experiments designed for different networks, and cluster’s number the results show the best performance based on the comparison that is done between the values of the objective function in the case of using standard FCM and Tabu-FCM, for the average of ten runs.

Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
An Evolutionary Algorithm for Solving Academic Courses Timetable Scheduling Problem

Scheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating opti

... Show More
Scopus (8)
Crossref (3)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
An Evolutionary Algorithm with Gene Ontology-Aware Crossover Operator for Protein Complex Detection

     Evolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust EA wit

... Show More
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Thu Jun 16 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Optimization algorithms for transportation problems with stochastic demand

The purpose of this paper is to solve the stochastic demand for the unbalanced transport problem using heuristic algorithms to obtain the optimum solution, by minimizing the costs of transporting the gasoline product for the Oil Products Distribution Company of the Iraqi Ministry of Oil. The most important conclusions that were reached are the results prove the possibility of solving the random transportation problem when the demand is uncertain by the stochastic programming model. The most obvious finding to emerge from this work is that the genetic algorithm was able to address the problems of unbalanced transport, And the possibility of applying the model approved by the oil products distribution company in the Iraqi Ministry of Oil to m

... Show More
Scopus (6)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Ieee Access
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Application Model for Linear Programming with an Evolutionary Ranking Function

One of the most important methodologies in operations research (OR) is the linear programming problem (LPP). Many real-world problems can be turned into linear programming models (LPM), making this model an essential tool for today's financial, hotel, and industrial applications, among others. Fuzzy linear programming (FLP) issues are important in fuzzy modeling because they can express uncertainty in the real world. There are several ways to tackle fuzzy linear programming problems now available. An efficient method for FLP has been proposed in this research to find the best answer. This method is simple in structure and is based on crisp linear programming. To solve the fuzzy linear programming problem (FLPP), a new ranking function (R

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Wed Oct 07 2020
Journal Name
Journal Of Legal Sciences
Evolutionary Interpretation of International Treaties

This article dealt with the evolutionary interpretation in three parts: First, it focused on the conceptual framework of evolutionary interpretation of International Treaties, its philosophical and legal foundation and its determinants. As for the second topic, it dealt with the position of the International Court of Justice from the evolutionary interpretation, studying and analyzing its precedents in this aspect and the resulting proposed and adopted criteria. The third topic dealt with the position of the judiciary of human rights through analyzing the rulings of the European Court of Human Rights and the Inter - American Court of Human Rights based on the criteria that were produced by the judicial practices, which varied according t

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Theoretical And Applied Information Technology
Scopus (3)
Scopus
Preview PDF