Preferred Language
Articles
/
iBd9RI8BVTCNdQwCy2jb
Advances in Document Clustering with Evolutionary-Based Algorithms
...Show More Authors

Document clustering is the process of organizing a particular electronic corpus of documents into subgroups of similar text features. Formerly, a number of conventional algorithms had been applied to perform document clustering. There are current endeavors to enhance clustering performance by employing evolutionary algorithms. Thus, such endeavors became an emerging topic gaining more attention in recent years. The aim of this paper is to present an up-to-date and self-contained review fully devoted to document clustering via evolutionary algorithms. It firstly provides a comprehensive inspection to the document clustering model revealing its various components with its related concepts. Then it shows and analyzes the principle research work in this topic. Finally, it compiles and classifies various objective functions, the core of the evolutionary algorithms, from the related collection of research papers. The paper ends up by addressing some important issues and challenges that can be subject of future work.

Scopus Crossref
View Publication
Publication Date
Tue Sep 03 2019
Journal Name
Aaps Pharmscitech
Recent Advances in Polymeric Implants
...Show More Authors

View Publication
Scopus (24)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Wed Sep 04 2019
Journal Name
American Association Of Pharmaceutical Scientists
Recent advances in polymeric implants
...Show More Authors

Implantable drug delivery systems, such as drug pumps and polymeric drug depots, have emerged as means of providing predetermined drug release profiles at the desired site of action. While initial implants aimed at providing an enduring drug supply, developments in polymer chemistry and pharmaceutical technology and the growing need for refined drug delivery patterns have prompted the design of sophisticated drug delivery implants such as on-demand drug-eluting implants and personalized 3D printed implants. The types of cargo loaded into these implants range from small drug molecules to hormones and even therapeutic cells. This review will shed light upon recent advances in materials and composites used for polymeric implant fabrication, hi

... Show More
View Publication
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Physics: Conference Series
Improve topic modeling algorithms based on Twitter hashtags
...Show More Authors
Abstract<p>Today with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy that it is critical to find topics from tweets. While topic modeling algorithms such as Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) are originally designed to derive topics from large documents such as articles, and books. They are often less efficient when applied to short text content like Twitter. Luckily, Twitter has many features that represent the interaction between users. Tweets have rich user-generated hashtags as keywords. In this paper, we exploit the hashtags feature to improve topics learned</p> ... Show More
View Publication
Scopus (19)
Crossref (17)
Scopus Crossref
Publication Date
Sun Feb 02 2025
Journal Name
Engineering, Technology &amp; Applied Science Research
An Enhanced Document Source Identification System for Printer Forensic Applications based on the Boosted Quantum KNN Classifier
...Show More Authors

Document source identification in printer forensics involves determining the origin of a printed document based on characteristics such as the printer model, serial number, defects, or unique printing artifacts. This process is crucial in forensic investigations, particularly in cases involving counterfeit documents or unauthorized printing. However, consistent pattern identification across various printer types remains challenging, especially when efforts are made to alter printer-generated artifacts. Machine learning models are often used in these tasks, but selecting discriminative features while minimizing noise is essential. Traditional KNN classifiers require a careful selection of distance metrics to capture relevant printing

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Apr 01 2015
Journal Name
2015 Annual Ieee Systems Conference (syscon) Proceedings
Automatic generation of fuzzy classification rules using granulation-based adaptive clustering
...Show More Authors

View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Wed Apr 10 2019
Journal Name
Engineering, Technology &amp; Applied Science Research
Content Based Image Clustering Technique Using Statistical Features and Genetic Algorithm
...Show More Authors

Text based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.

... Show More
View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
User (K-Means) for clustering in Data Mining with application
...Show More Authors

 

 

  The great scientific progress has led to widespread Information as information accumulates in large databases is important in trying to revise and compile this vast amount of data and, where its purpose to extract hidden information or classified data under their relations with each other in order to take advantage of them for technical purposes.

      And work with data mining (DM) is appropriate in this area because of the importance of research in the (K-Means) algorithm for clustering data in fact applied with effect can be observed in variables by changing the sample size (n) and the number of clusters (K)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jul 17 2025
Journal Name
International Journal Of Data And Network Science
Multi-objective of wind-driven optimization as feature selection and clustering to enhance text clustering
...Show More Authors

Text Clustering consists of grouping objects of similar categories. The initial centroids influence operation of the system with the potential to become trapped in local optima. The second issue pertains to the impact of a huge number of features on the determination of optimal initial centroids. The problem of dimensionality may be reduced by feature selection. Therefore, Wind Driven Optimization (WDO) was employed as Feature Selection to reduce the unimportant words from the text. In addition, the current study has integrated a novel clustering optimization technique called the WDO (Wasp Swarm Optimization) to effectively determine the most suitable initial centroids. The result showed the new meta-heuristic which is WDO was employed as t

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Microwave Nondestructive Testing for Defect Detection in Composites Based on K-Means Clustering Algorithm
...Show More Authors

View Publication
Scopus (59)
Crossref (59)
Scopus Clarivate Crossref