Preferred Language
Articles
/
iBbgCocBVTCNdQwCuDLC
Generating pairwise combinatorial test set using artificial parameters and values
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Comparison of HF and HCl Chemical Laser Parameters by using Mathematical Model
...Show More Authors

A simplified theoretical comparison of the hydrogen chloride (HCl) and hydrogen fluoride (HF) chemical lasers is presented by using computer program. The program is able to predict quantitative variations of the laser characteristics as a function of rotational and vibrational quantum number. Lasing is assumed to occur in a Fabry-Perot cavity on vibration-rotation transitions between two vibrational levels of hypothetical diatomic molecule. This study include a comprehensive parametric analysis that indicates that the large rotational constant of HF laser in comparison with HCl laser makes it relatively easy to satisfy the partial inversion criterion. The results of this computer program proved their credibility when compared with th

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
Using simulation to estimate parameters and reliability function for extreme value distribution
...Show More Authors

   This study includes Estimating scale parameter, location parameter  and reliability function  for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).

 Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Generating a Strong Key for a Stream Cipher Systems Based on Permutation Networks
...Show More Authors

The choice of binary Pseudonoise (PN) sequences with specific properties, having long period high complexity, randomness, minimum cross and auto- correlation which are essential for some communication systems. In this research a nonlinear PN generator is introduced . It consists of a combination of basic components like Linear Feedback Shift Register (LFSR), ?-element which is a type of RxR crossbar switches. The period and complexity of a sequence which are generated by the proposed generator are computed and the randomness properties of these sequences are measured by well-known randomness tests.

View Publication Preview PDF
Crossref
Publication Date
Fri Nov 01 2024
Journal Name
Optical Materials
Nanostructured LNTO saturable absorber for generating multi-wavelength laser in Q-switched EDFL
...Show More Authors

In this paper, we propose a new and efficient ferroelectric nanostructure metal oxide lithium niobate [(Li1.075Nb0.625Ti0.45O3), (LNTO)] solid film as a saturable absorber (SA) for modulating passive Q-switched erbium-doped fiber laser (EDFL). The SA is fabricated as a nanocomposite solid film by the drop-casting process in which the LNTO is planted within polyvinylidene fluoride-trifluoroethylene [P(VDF-TrFE)] as host copolymer. The optical and physical characteristics of the solid film are experimentally established. The SA is incorporated within the cavity of EDFL to examine its capability for producing multi-wavelength laser. The experimental results proved that a multi-wavelength laser is produced, where stable four lines with central

... Show More
View Publication
Scopus (3)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Ssrn Electronic Journal
Increasing Safety in Highways Transit Systems by Using Ethical Artificial Intelligence AI
...Show More Authors

“Smart city” projects have become fully developed and are actively using video analytics. Our study looks at how video analytics from surveillance cameras can help manage urban areas, making the environment safer and residents happier. Every year hundreds of people fall on subway and railway lines. The causes of these accidents include crowding, fights, sudden health problems such as dizziness or heart attacks, as well as those who intentionally jump in front of trains. These accidents may not cause deaths, but they cause delays for tens of thousands of passengers. Sometimes passers-by have time to react to the event and try to prevent it, or contact station personnel, but computers can react faster in such situations by using ethical

... Show More
View Publication
Crossref
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Journal Of Science
Crescent Moon Visibility: A New Criterion using Deep learned Artificial Neural-Network
...Show More Authors

     Many authors investigated the problem of the early visibility of the new crescent moon after the conjunction and proposed many criteria addressing this issue in the literature. This article presented a proposed criterion for early crescent moon sighting based on a deep-learned pattern recognizer artificial neural network (ANN) performance. Moon sight datasets were collected from various sources and used to learn the ANN. The new criterion relied on the crescent width and the arc of vision from the edge of the crescent bright limb. The result of that criterion was a control value indicating the moon's visibility condition, which separated the datasets into four regions: invisible, telescope only, probably visible, and certai

... Show More
Preview PDF
Scopus Crossref
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of the Point Efficiency of Sieve Tray Using Artificial Neural Network
...Show More Authors

An application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Fractional Hold-Up in RDC Column Using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 31 2023
Journal Name
Sumer Journal For Pure Science
COVID-19Disease Diagnosis using Artificial Intelligence based on Gene Expression: A Review
...Show More Authors

Publication Date
Sun Sep 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Development of PVT Correlation for Iraqi Crude Oils Using Artificial Neural Network
...Show More Authors

Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability

... Show More
View Publication Preview PDF