A factorial experiment (2× 3) in randomized complete block design (RCBD) with three replications was conducted to examine the effect of honeycomb selection method using three interplant distances on yield and its components of two cultivars of bean, Bronco and Strike. Interplant distances used were 75× 65 cm, 90× 78 cm, and 105× 91 cm (row× plant) represent short (high plant density), intermediate (intermediate plant density), and wide (low plant density) distance, respectively. Parameters used for selection were number of days from planting to the initiation of first flower, number of nodes formed prior to first flower, and number of main branches. Results showed significant superiority of the Bronco cultivar represented in the number of pods per plant, number of seeds per pod, and the total length of pods which were 23.1 pods/plant, 5.71 seeds/pod, and 13.09 cm, respectively. Moreover, total carbohydrates%, fibers%, and total soluble solids% were significantly higher in the pods of Bronco cultivar compared to Strike. Low and intermediate plant density gave the highest yield per plant. However, the high plant density gave the highest early and total yields which were 0.517 and 1.719 ton/ha, respectively.
Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreFlow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relativel
... Show Moreفي السنوات الأخيرة، أدى التقدم التكنولوجي في إنترنت الأشياء (IoT) وأجهزة الاستشعار الذكية إلى فتح اتجاهات جديدة وإعطاء حلول عملية في مختلف قطاعات الحياة. يتم التعرف على إنترنت الأشياء كتنولوجيا حديثة تربط بين مختلف انواع الشبكات. تم تحسين أنواع مختلفة من قطاعات الرعاية الصحية في المجال الطبي بناءً على هذه التكنولوجيا. أحد هذه القطاعات الهامة هو نظام مراقبة الصحة (HMS). تعتبر مراقبة المريض عن بعد لاسلكيًا وبت
... Show MoreBackground: Ultrasonography has been used to examine the thickness of the lower uterine segment in women with previous cesarean sections in an attempt to predict the risk of scar dehiscence during subsequent pregnancy. The predictive value of such measurement has not been adequately assessed. Objectives: To correlate lower uterine segment thickness measured by trans abdominal ultrasound in pregnant women with previous cesarean section with that measured during cesarean section by caliper and to find out minimum lower uterine segment thickness indicative of integrity of the scar.Methods: A prospective observational study at Elwyia Maternity Teaching Hospital, from January 2011 to January 2012. A total of 143 women were enrolled in the stu
... Show MoreErratum for Organic acid concentration thresholds for ageing of carbonate minerals: Implications for CO2 trapping/storage.