Twitter data analysis is an emerging field of research that utilizes data collected from Twitter to address many issues such as disaster response, sentiment analysis, and demographic studies. The success of data analysis relies on collecting accurate and representative data of the studied group or phenomena to get the best results. Various twitter analysis applications rely on collecting the locations of the users sending the tweets, but this information is not always available. There are several attempts at estimating location based aspects of a tweet. However, there is a lack of attempts on investigating the data collection methods that are focused on location. In this paper, we investigate the two methods for obtaining location-based data provided by Twitter API, Twitter places and Geocode parameters. We studied these methods to determine their accuracy and their suitability for research. The study concludes that the places method is the more accurate, but it excludes a lot of the data, while the geocode method provides us with more data, but special attention needs to be paid to outliers. Copyright © Research Institute for Intelligent Computer Systems, 2018. All rights reserved.
Data centric techniques, like data aggregation via modified algorithm based on fuzzy clustering algorithm with voronoi diagram which is called modified Voronoi Fuzzy Clustering Algorithm (VFCA) is presented in this paper. In the modified algorithm, the sensed area divided into number of voronoi cells by applying voronoi diagram, these cells are clustered by a fuzzy C-means method (FCM) to reduce the transmission distance. Then an appropriate cluster head (CH) for each cluster is elected. Three parameters are used for this election process, the energy, distance between CH and its neighbor sensors and packet loss values. Furthermore, data aggregation is employed in each CH to reduce the amount of data transmission which le
... Show MoreAbstract: -
The concept of joint integration of important concepts in macroeconomic application, the idea of cointegration is due to the Granger (1981), and he explained it in detail in Granger and Engle in Econometrica (1987). The introduction of the joint analysis of integration in econometrics in the mid-eighties of the last century, is one of the most important developments in the experimental method for modeling, and the advantage is simply the account and use it only needs to familiarize them selves with ordinary least squares.
Cointegration seen relations equilibrium time series in the long run, even if it contained all the sequences on t
... Show MoreBackground:
generally genetic disorders are a leading cause of spontaneous abortion,
The gravity and magnetic data of Tikrit-Kirkuk area in central Iraq were considered to study the tectonic situation in the area. The residual anomalies were separated from regional using space windows method with space of about 24, 12 and 10km to delineate the source level of the residual anomalies. The Total Horizontal Derivative (THD) is used to identify the fault trends in the basement and sedimentary rocks depending upon gravity and magnetic data. The identified faults in the study area show (NW-SE), less common (NE-SW) and rare (N-S) trends. Some of these faults extending from the basement to the upper most layer of the sedimentary rocks. It was found that the depth of some gravity and magnetic source range 12-13Km, which confirm th
... Show More3D models delivered from digital photogrammetric techniques have massively increased and developed to meet the requirements of many applications. The reliability of these models is basically dependent on the data processing cycle and the adopted tool solution in addition to data quality. Agisoft PhotoScan is a professional image-based 3D modelling software, which seeks to create orderly, precise n 3D content from fixed images. It works with arbitrary images those qualified in both controlled and uncontrolled conditions. Following the recommendations of many users all around the globe, Agisoft PhotoScan, has become an important source to generate precise 3D data for different applications. How reliable is this data for accurate 3D mo
... Show MoreIn this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used: local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the
... Show MoreThis study has been accomplished by testing three different models to determine rocks type, pore throat radius, and flow units for Mishrif Formation in West Qurna oilfield in Southern Iraq based on Mishrif full diameter cores from 20 wells. The three models that were used in this study were Lucia rocks type classification, Winland plot was utilized to determine the pore throat radius depending on the mercury injection test (r35), and (FZI) concepts to identify flow units which enabled us to recognize the differences between Mishrif units in these three categories. The study of pore characteristics is very significant in reservoir evaluation. It controls the storage mechanism and reservoir fluid prope
Let be an n-Banach space, M be a nonempty closed convex subset of , and S:M→M be a mapping that belongs to the class mapping. The purpose of this paper is to study the stability and data dependence results of a Mann iteration scheme on n-Banach space
Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show More