To promote sustainable steel-concrete composite structures, it is essential to develop special shear connectors that facilitate accelerated construction and deconstruction. A lockbolt demountable shear connector (LBDSC) was recently proposed. While the LBDSC has been evaluated using horizontal and vertical (standard) push-out tests, it is essential to further assess the disassembly mechanism and the positive flexural performance of prefabricated demountable composite beams (PDCBs) under both serviceability and ultimate limit states. Two full-scale test specimens of PDCBs with LBDSC were designed with partial shear connections and assessed using a three or four-point load beam setup under both cyclic and static monotonic loading conditions. The experimental results indicate that the failure modes of the PDCBs include longitudinal cracking in the grout between concrete slabs along the composite beam. Additionally, the demountable composite beams exhibited typical ductile flexural failure. The disassembly and reassembly of the PDCB were evaluated using a cyclic loading setup, and the results indicated that the structural performance of the PDCB was not compromised. The experimental results for load-carrying capacity and elastic stiffness of the PDCB were compared to the corresponding values from composite beam theory and the provisions in Eurocode 4. The agreement between the tested and calculated results validates the applicability of the Eurocode 4 equations to demountable composite beams utilizing LBDSCs.
Water contamination is a pressing global concern, especially regarding the presence of nitrate ions. This research focuses on addressing this issue by developing an effective adsorbent for removing nitrate ions from aqueous solutions. two adsorbents Chitosan-Zeolite-Zirconium (Cs-Ze-Zr composite beads and Chitosan-Bentonite-Zirconium Cs-Bn-Zr composite beads were prepared. The study involved continuous experimentation using a fixed bed column with varying bed heights (1.5 and 3 cm) and inlet flow rates (1 and 3 ml/min). The results showed that the breakthrough time increased with higher bed heights for both Cs-Ze-Zr and Cs-Bn-Zr composite beads. Conversely, an increase in flow rate led to a decrease in breakthrough time. Notab
... Show MoreThe civil engineering field currently focus on sustainable development. It is important to develop new sustainable and economic generations of concrete, using eco-friendly materials in the construction industry with a fair amount of costs and minimizing the impact upon the environment by reducing CO2 emissions from the cement industry as a whole while still obtaining high cement quality and strength. The main objective of this research is to clarify the mechanical behavior and ability to use Portland limestone cement in producing self compacted concrete, due to the beneficious effec of the limestone cement economically and enviromently. The research investigates the effect of using steel and polymer meshs as reinforcement, where the results
... Show MoreContracting companies play a prominent role today in economic activity, due to their contribution to the implementation of major construction projects which together constitute the infrastructure of society. Most construction projects also suffer from exceeding the time and cost specified and planned for the completion of the project, and this comes for several reasons, including the work environment, country conditions, The method of managing project costs and the techniques used in its implementation Accordingly, the concepts of lean construction came, which help in addressing the causes of waste, both in time and cost, in addition to the fact that project management needs techniques that are useful in controlling the control and manag
... Show MoreThe effect of adding sand on clayey soil shear strength is investigated in this study. Five different percentage of clay-sand mixtures are used; 100% clay with 0% sand termed 100C, 60% clay with 40% sand termed 60C-40S, 30% clay with 70% sand termed 30C-70S, 15% clay with 85% sand termed 15C-85S, and as well as 100% sand termed 100S. The used clay was obtained from Baghdad city in Iraq and classified as CH soil, while the used sand was taken from Al-Khider area from Iraq and classified as SW soil. The initial dry unit weight for all mixtures is 16 kN/m3. The results show that the variations of the soil shear strength properties with soil components content changes
Silicon (Si)-based materials are sought in different engineering applications including Civil, Mechanical, Chemical, Materials, Energy and Minerals engineering. Silicon and Silicon dioxide are processed extensively in the industries in granular form, for example to develop durable concrete, shock and fracture resistant materials, biological, optical, mechanical and electronic devices which offer significant advantages over existing technologies. Here we focus on the constitutive behaviour of Si-based granular materials under mechanical shearing. In the recent times, it is widely recognised in the literature that the microscopic origin of shear strength in granular assemblies are associated with their
Background: This in vitro study evaluated the fracture resistance of weakened endodontically treated premolars with class II MOD cavities restored with different composite restorations (Low-shrinkage Filtek P90, nanohybrid Filtek Z250 XT and SDR bulk fill). The type and mode of fracture were also assessed for all the experimental groups. Materials and Method: Fifty human adult maxillary premolar teeth were selected for this study. Standardized extensive class II MOD cavities with endodontic treatment were prepared for all teeth, except those that were saved as intact control. The teeth were divided into five groups of ten teeth each (n=10): (Group 1) intact control group, (Group 2) unrestored teeth with endodontic treatment, (Group 3) resto
... Show MoreRapid worldwide urbanization and drastic population growth have increased the demand for new road construction, which will cause a substantial amount of natural resources such as aggregates to be consumed. The use of recycled concrete aggregate could be one of the possible ways to offset the aggregate shortage problem and reduce environmental pollution. This paper reports an experimental study of unbound granular material using recycled concrete aggregate for pavement subbase construction. Five percentages of recycled concrete aggregate obtained from two different sources with an originally designed compressive strength of 20–30 MPa as well as 31–40 MPa at three particle size levels, i.e., coarse, fine, and extra fine, were test
... Show MoreThe pillars of sustainable development are representing the interface between environmental, economic, and social sustainability. Sustainable development is a method of planning and managing construction projects to reduce the effect of the construction process on the environment so that there is a balance between environmental capabilities and the human needs of present and future generations. Usually, Environmental sustainability is most important and effective in construction projects. The environment suffers from significant negative impacts as a result of the implementation of construction projects; therefore, this study aims to identify the effecting factors on environmentally sustainable development. The methodology of this s
... Show More