In the current study, a novel approach for separating ethanol-water mixture by microbubble distillation technology was investigated. Traditional distillation processes require large amounts of energy to raise the liquid to its boiling point to effect removal of volatile components. The concept of microbubble distillation by comparison is to heat the gas phase rather than the liquid phase to achieve separation. The removal of ethanol from the thermally sensitive fermentation broths was taken as a case of study. Consequently the results were then compared with those which could be obtained under equilibrium conditions expected in an “ideal” distillation unit. Microbubble distillation has achieved vapour compositions higher than that which could be obtained under traditional equilibrium conditions. The separation was achieved at liquid temperature significantly less than the boiling point of the mixture. In addition, it was observed that the separation efficiency of the microbubble distillation could be increased by raising the injected air temperature, while the temperature of the liquid mixture increased only moderately. The separation efficiency of microbubble distillation was compared with that of pervaporation for the recovery of bioethanol from the thermally sensitive fermentation broths. The technology could be controlled to give high separation and energy efficiency. This could contribute to improving commercial viability of biofuel production and other coproducts of biorefinery processing.
The present work aims to study the removal of dyes from wastewater by reverse osmosis process. Two dyes were used direct blue 6, and direct yellow. Experiments were performed with feed concentration (75 – 450 ppm), operation temperature (30 – 50 oC) and time (0.2 – 2.0 hr). The membrane used is thin film composite membrane (TFC). It was found that modal permeate concentration decreases with increasing feed concentration and time operating, while permeate concentration increases with increasing feed temperature. Also it was found that product rate increase with increasing temperature, but it decrease with increasing feed concentration and time. The concentration of reject solution showed an increase with increasing feed concentratio
... Show MoreThis research deals with the most important heritage in Iraq, which are the Iraqi marshes, especially Abu Zarag marsh in Al-Nasiriyah city south of Iraq. The research is divided into two parts. The first part deals with evaluating the water quality parameters of Abu Zarag marsh for the period from December 2018 to April 2019 which is the flooding season. The parameters are Temperature, pH, Electrical Conductivity, Total Dissolved Solids, Alkalinity, Total Hardness, Turbidity, Dissolved Oxygen, Sulfate, Nitrate. The second part is a comparison between the water quality parameters during the recent period with the same period during the previous years from 2014 to 2019. The results are
Due to severe scouring, many bridges failed worldwide. Therefore, the safety of the existing bridge (after contrition) mainly depends on the continuous monitoring of local scour at the substructure. However, the bridge's safety before construction mainly depends on the consideration of local scour estimation at the bridge substructure. Estimating the local scour at the bridge piers is usually done using the available formulae. Almost all the formulae used in estimating local scour at the bridge piers were derived from laboratory data. It is essential to test the performance of proposed local scour formulae using field data. In this study, the performance of selected bridge scours estimation formulae was validated and sta
... Show MoreAbstract
Electrical magnate was designed and constructed, the optimum Magnetic flux and the effect of time on the physical properties of the alkaline (magnetic water) produced from the bottled drinking water [the total dissolved solids (TDS) or the electrical conductivity, and pH] were studied, to simulate ZamZam water in Mekka Saudi Arabia. Also, the efficiency of magnetic field from this designed electrical magnate in decreasing the TDS of sea water (of 1500 ppm NaCl Content), to convert it to water suitable for irrigation (TDS<1000 ppm) was investigated in this work.The results show that the magnetic flux from our designed electrical magnate in the range of (0.013- 0.08) Tesla and 30 minut
... Show MoreThis research presents a new algorithm for classification the
shadow and water bodies for high-resolution satellite images (4-
meter) of Baghdad city, have been modulated the equations of the
color space components C1-C2-C3. Have been using the color space
component C3 (blue) for discriminating the shadow, and has been
used C1 (red) to detect the water bodies (river). The new technique
was successfully tested on many images of the Google earth and
Ikonos. Experimental results show that this algorithm effective to
detect all the types of the shadows with color, and also detects the
water bodies in another color. The benefit of this new technique to
discriminate between the shadows and water in fast Matlab pro
Based on the diazotization-coupling reaction, a new, simple, and sensitive spectrophotometric method for determining of a trace amount of (BPF) is presented in this paper. Diazotized metoclopramide reagent react with bisphenol F produces an orange azo-compound with a maximum absorbance at 461 nm in alkaline solution. The experimental parameters were optimized such as type of alkaline medium, concentration of NaOH, diazotized metoclopramide amount, order additions, reaction time, temperature, and effect of organic solvents to achieve the optimal performance for the proposed method. The absorbance increased linearly with increasing bisphenol F concentration in the range of 0.5-10 μg mL-1 under ideal conditions, with a correlati
... Show More
