Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as mean absolute error (MAE), root mean square error (RMSE), and R-squared. The future forecast is compared with an outcome of a previous physical model that integrates wells and reservoir properties to simulate gas production using regressions and forecasts based on empirical and theoretical relationships. Regression analysis ensures alignment between historical data and model predictions, forming a baseline for hybrid model performance evaluation. The results reveal the complementary attributes of these methodologies, providing insights into integrating data-driven and physics-based approaches for optimal reservoir management. The hybrid model captured the production rate conservatively with an extra margin of three years in favor of the physical model.
The aim of the study was comparative between oxidative stress in diabetes mellitus using the measurement of some biophysical and biochemical parameters on two groups of diabetic patients, were conducted in the Al-Yarmuk Teaching Hospital,30 patients insulin dependent diabetes mellitus (IDDM) or type 1 ,their ages ranged between (15-45) and30 patients non- insulin dependent diabetes mellitus (NIDDM) or type 2,their ages ranged between (42-65).This study has been compared with 30 healthy subjects. The present study was demonstrated to evaluate the alteration in oxidative stress as measured by plasma and red blood cells Malondialdehyde (MDA) andchanges in antioxidant mechanism as measured by plasma and red blood cells Glutathione (GSH)
... Show MoreThe marketing logistic chain, as an integrated system aimed to balance the achievement of its main opposite objectives which represented in the access to the best service presented to the customer with lowest possible logistic costs especially the transportation costs, where encourages the researcher to choose the second objective as a field of this study in order to reduce the transportation costs in the final link of marketing logistic chain which related to delivering of fuel oil to the customer that falls within organizational responsibilities of the company under consideration (Oil Marketing Company) and also known in a brief name by (SOMO) through two methods, the first is by functioning quantative techniques by using trans
... Show MoreOne of the costliest problems facing the production of hydrocarbons in unconsolidated sandstone reservoirs is the production of sand once hydrocarbon production starts. The sanding start prediction model is very important to decide on sand control in the future, including whether or when sand control should be used. This research developed an easy-to-use Computer program to determine the beginning of sanding sites in the driven area. The model is based on estimating the critical pressure drop that occurs when sand is onset to produced. The outcomes have been drawn as a function of the free sand production with the critical flow rates for reservoir pressure decline. The results show that the pressure drawdown required to
... Show MoreViruses have not previously been reported to act as chemotactic/chemoattractive agents. Rather, viruses as extracellular entities are generally viewed as non-metabolically active spore-like agents that await further infection events upon collision with appropriate host cells. That a virus might actively contribute to its fate via chemotaxis and change the behavior of an organism independent of infection is unprecedented.
Background: Dialysis is in common use to treat patients
with end stage renal failure .However longstanding dialysis
harboring some cellular changes in various body fluids.
This study was conducted in order to detect these changes
in urine.
Objective: The study was conducted to detect cellular
changes in urine of patients with longstanding dialysis.
Method: Fifty-three urine samples were examined
cytologically obtained from patients with longstanding
dialysis during 6 months period. Freshly voided midstream
urine samples were taken . Samples were centrifuged and 2
to 3 drops of sediments were smeared on 2 glass slides and
fixed in 95% ethyl alcohol then stained with Hand E stain
to be evaluated.
R
Profit is a goal sought by all banks because it brings them income and guarantees them survival and continuity, and on the other hand, facing commitments without financial crisis. Hence the idea of research in his quest to build scientific tools and means that can help bank management in particular, investors, lenders and others to predict financial failure and to detect early financial failures. The research has produced a number of conclusions, the most important of which is that all Islamic banks sample a safe case of financial failure under the Altman model, while according to the Springate model all Islamic banks sample a search for a financial failure except the Islamic Bank of Noor Iraq for Investment and Finance )BINI(. A
... Show MoreThe gas sensing properties of undoped Co3O4 and doped with Y2O3 nanostructures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for the prepared thin films. XRD analysis showed that all films were polycrystalline, of a cubic structure with crystallite size of (12.6) nm for cobalt oxide and (12.3) nm for the Co3O4:6% Y2O3. The SEM analysis of thin films indicated that all films undoped Co3O4 and doped possessed a nanosphere-like structure.
The sensi
... Show MoreCopper nanoparticles (CuNPs) were prepared with different diameters by sonoelectrodeposition technique using Electrodeposition process coupled with high-power ultrasound horn (Sonoelectrodeposition). The particle diameter of the CuNPs was adjusted by varying CuSO4 solution acidity (pH) and current density. The morphology and structure of the CuNPs were examined by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). It was found that the size of the produced copper nanoparticles ranged between 22 to 77 nm, where the diameter of CuNPs increases with reduction the solution acidity from 0.5 to 1.5 pH and increasing the current density of the deposition from 100 to 400 nm. Finally the produced CuNPs were pressed to fabricate disc
... Show More