Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as mean absolute error (MAE), root mean square error (RMSE), and R-squared. The future forecast is compared with an outcome of a previous physical model that integrates wells and reservoir properties to simulate gas production using regressions and forecasts based on empirical and theoretical relationships. Regression analysis ensures alignment between historical data and model predictions, forming a baseline for hybrid model performance evaluation. The results reveal the complementary attributes of these methodologies, providing insights into integrating data-driven and physics-based approaches for optimal reservoir management. The hybrid model captured the production rate conservatively with an extra margin of three years in favor of the physical model.
The effect of compound machine on wheat/ AlNoor cultivar was studied based on some technical indicators. were tested under three speeds ( 2.541, 3.433 and 4.091km.hr-1) and three tillage depths (14, 16 and 18cm). The experiments were conducted in a factorial experiment under complete randomized design with three replications. The results showed that the 2.541km.hr-1 practical speed was significantly better than other two speed in all studied conditions. Except for the FC, which achieved the best results with the third speed 4.091 km.hr-1. mechanical parameters, plant growth parameters and yield and growth parameters. The 1
model is derived, and the methodology is given in detail. The model is constructed depending on some measurement criteria, Akaike and Bayesian information criterion. For the new time series model, a new algorithm has been generated. The forecasting process, one and two steps ahead, is discussed in detail. Some exploratory data analysis is given in the beginning. The best model is selected based on some criteria; it is compared with some naïve models. The modified model is applied to a monthly chemical sales dataset (January 1992 to Dec 2019), where the dataset in this work has been downloaded from the United States of America census (www.census.gov). Ultimately, the forecasted sales
A multivariate multisite hydrological data forecasting model was derived and checked using a case study. The philosophy is to use simultaneously the cross-variable correlations, cross-site correlations and the time lag correlations. The case study is of two variables, three sites, the variables are the monthly rainfall and evaporation; the sites are Sulaimania, Dokan, and Darbandikhan.. The model form is similar to the first order auto regressive model, but in matrices form. A matrix for the different relative correlations mentioned above and another for their relative residuals were derived and used as the model parameters. A mathematical filter was used for both matrices to obtain the elements. The application of this model indicates i
... Show MoreWith the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade t
... Show MoreIn this research, we prepared a hybrid composite material of polymeric matrix hand cast method, composite material has been attended from epoxy resin EP as matrix materials reinforced woven roving fiber jute is constant volume fraction (13%), PVC fibers and woven glass fiber with different fraction on the properties of prepared composite materials to PVC fiber and glass fiber, some of mechanical tests were done at room temperature (impact test and banding test). Result shows that the values of (modulus bending elastic and fracture toughness) increase fraction of fiber with the increase of PVC, E-glass, there include (thermal conductivity and dielectric constant). Also experimental result indicated that the (thermal conductivity and diele
... Show MoreThe present work describes guggul as a novel carrier for some anti-inflammatory drugs. Guggulusomes containing different concentration of guggul with aceclofenac were prepared by sonication method and characterized for vesicle shape, size, size-distribution, pH, viscosity, spread ability, homogeneity, and accelerated stability in-vitro drug permeation through mouse skin. The vesicles exhibited an entrapment efficiency of 93.2 ± 12%, vesicle size of 0.769 ± 3μm and a zeta potential of - 6.21mV. In vitro drug release was analyzed using Franz’s diffusion cells. The cumulative release of the guggulusomes gel (G2) was 75.8% in 18 hrs, which is greater than that all the gel formulation. The stability profile of prepare
... Show MoreThis review covers recent progress in the synthesis of curcumin and the bioactivity of semisynthetic and synthetic analogs of curcumin. The review also shows how curcumin is a useful intermediate for the synthesis of more complex organic molecules; historical perspective; the process of preparing the metal complexes and characterization the produced complexes using various spectral and other techniques; shows the importance of curcumin and its derivatives for their potential applications in medical devices and broad-spectrum of medical application such as antibiotic ointment, alternative therapeutics, antifungal, and antibacterial activities
Psychological damage is one of the damages that can be compensated under the fault of negligence in the framework of English law, where the latter intends to include an enumeration of civil errors on the basis of which liability can be determined, and aims under each of these errors to protect a specific interest (for example, defamation protects Among the damage to reputation and inconvenience are the rights contained on the land), and the same is true for the rest of the other errors. Compensation for psychological damage resulting from negligence has raised problems in cases where the psychological injury is "pure", that is, those that are not accompanied by a physical injury, which required subjecting them to special requirements by the
... Show MoreBackground: Piezosurgery improved the split approach by making it safer, easier, and less prone to complications when treating extremely atrophic crests. Densah drills, with their unique design, expand the ridge by densifying bone in a reverse, non-cutting mode. Objective: To assess the effectiveness of sagittal piezosurgery, which involves cutting bone to the full implant depth and then expanding it using osseodensification drills. We use this technique to expand narrow alveolar bones and simultaneously place dental implants in the maxillary and mandibular arches. Methods: Fourteen patients received 31 dental implants. The maxillary arch received 19, and the mandible received 12 dental implants. This study will include patients who
... Show More