Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as mean absolute error (MAE), root mean square error (RMSE), and R-squared. The future forecast is compared with an outcome of a previous physical model that integrates wells and reservoir properties to simulate gas production using regressions and forecasts based on empirical and theoretical relationships. Regression analysis ensures alignment between historical data and model predictions, forming a baseline for hybrid model performance evaluation. The results reveal the complementary attributes of these methodologies, providing insights into integrating data-driven and physics-based approaches for optimal reservoir management. The hybrid model captured the production rate conservatively with an extra margin of three years in favor of the physical model.
HM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023
Given the importance of possessing the digital competence (DC) required by the technological age, whether for teachers or students and even communities and governments, educational institutions in most countries have sought to benefit from modern technologies brought about by the technological revolution in developing learning and teaching and using modern technologies in providing educational services to learners. Since university students will have the doors to work opened in all fields, the research aims to know their level of DC in artificial intelligence (AI) applications and systems utilizing machine learning (ML) techniques. The descriptive approach was used, as the research community consisted of students from the University
... Show MoreMachine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims
... Show MoreThe research is concerned with studying the characteristics of Sustainable Architecture and Green Architecture, as a general research methodology related to the specific field of architecture, based on the differentiation between two generic concepts, Sustainability and Greening, to form the framework of the research specific methodology, where both concepts seem to be extremely overlapping for research centers, individuals, and relevant organizations. In this regard, the research tend towards searching their characteristics and to clearly differentiates between the two terms, particularly in architecture, where the research seeks understanding sustainable and green architectures, how they are so close or so far, and the
... Show MoreThe present work describes guggul as a novel carrier for some anti-inflammatory drugs. Guggulusomes containing different concentration of guggul with aceclofenac were prepared by sonication method and characterized for vesicle shape, size, size-distribution, pH, viscosity, spread ability, homogeneity, and accelerated stability in-vitro drug permeation through mouse skin. The vesicles exhibited an entrapment efficiency of 93.2 ± 12%, vesicle size of 0.769 ± 3μm and a zeta potential of - 6.21mV. In vitro drug release was analyzed using Franz’s diffusion cells. The cumulative release of the guggulusomes gel (G2) was 75.8% in 18 hrs, which is greater than that all the gel formulation. The stability profile of prepare
... Show MoreSoftware-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show MoreThis review covers recent progress in the synthesis of curcumin and the bioactivity of semisynthetic and synthetic analogs of curcumin. The review also shows how curcumin is a useful intermediate for the synthesis of more complex organic molecules; historical perspective; the process of preparing the metal complexes and characterization the produced complexes using various spectral and other techniques; shows the importance of curcumin and its derivatives for their potential applications in medical devices and broad-spectrum of medical application such as antibiotic ointment, alternative therapeutics, antifungal, and antibacterial activities
The effect of compound machine on wheat/ AlNoor cultivar was studied based on some technical indicators. were tested under three speeds ( 2.541, 3.433 and 4.091km.hr-1) and three tillage depths (14, 16 and 18cm). The experiments were conducted in a factorial experiment under complete randomized design with three replications. The results showed that the 2.541km.hr-1 practical speed was significantly better than other two speed in all studied conditions. Except for the FC, which achieved the best results with the third speed 4.091 km.hr-1. mechanical parameters, plant growth parameters and yield and growth parameters. The 1
Gas and Downhole Water Sink, Gravity Drainage, GDWS-AGD, Enhance the Recovery of Oil