Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as mean absolute error (MAE), root mean square error (RMSE), and R-squared. The future forecast is compared with an outcome of a previous physical model that integrates wells and reservoir properties to simulate gas production using regressions and forecasts based on empirical and theoretical relationships. Regression analysis ensures alignment between historical data and model predictions, forming a baseline for hybrid model performance evaluation. The results reveal the complementary attributes of these methodologies, providing insights into integrating data-driven and physics-based approaches for optimal reservoir management. The hybrid model captured the production rate conservatively with an extra margin of three years in favor of the physical model.
In this article, Pb2Ba1.7Sr0.3Ca2Cu3O10+δ superconductor material was synthesized using conventional solid-state reaction method. X-ray diffraction (XRD) analysis demonstrated one dominant phase 2223 and some impurities in the product powder. The strongest peaks in the XRD pattern were successfully indexed assuming a pseudo-tetragonal cell with lattice constants of a = 3.732, b = 3.733 and c = 14.75 Å for a Pb-Based compound. The crystallite size and lattice strain between the layers of the studied compound were estimated using several methods, namely the Scherrer, Williamson-Hall (W.H), sizestrain plot (SSP) and Halder Wagner (H.W) approach. The values of crystallite size, calculated by Scherrer, W.H, SSP and H.W methods, were 89.454077
... Show MoreThe convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreThis research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer
... Show MoreCommunity detection is useful for better understanding the structure of complex networks. It aids in the extraction of the required information from such networks and has a vital role in different fields that range from healthcare to regional geography, economics, human interactions, and mobility. The method for detecting the structure of communities involves the partitioning of complex networks into groups of nodes, with extensive connections within community and sparse connections with other communities. In the literature, two main measures, namely the Modularity (Q) and Normalized Mutual Information (NMI) have been used for evaluating the validation and quality of the detected community structures. Although many optimization algo
... Show MoreThe tourism industry has undergone exponential transformation, reshaped by online travel agencies (OTAs), shifting consumer preferences, and technological advancements. Established OTAs like TripAdvisor and Travelocity face pressures to adapt their strategies to capitalize on these disruptive landscape changes. This research involves a comparative analysis examining the key challenges confronting TripAdvisor and Travelocity, with a focus on opportunities to leverage artificial intelligence (AI) in enhancing personalization and the traveler experience. The study utilizes publicly available data on the companies and academic literature on AI innovation diffusion. Findings reveal that while TripAdvisor has actively developed AI-based trip plan
... Show MoreObjectives Dental implant is a revolution in dentistry; some shortages are still a focus of research. This study use long duration of radiofrequency (RF)–magnetron sputtering to coat titanium (Ti) implant with hydroxyapatite (HA) to obtain a uniform, strongly adhered in a few micrometers in thickness. Materials and Methods Two types of substrates, discs and root form cylinders were prepared using a grade 1 commercially pure (CP) Ti rod. A RF–magnetron sputtering device was used to coat specimens with HA. Magnetron sputtering was set at 150 W for 22 hours at 100°C under continuous argon gas flow and substrate rotation at 10 rpm. Coat properties were evaluated via field emission scanning electron microscopy (FESEM), scanning electro
... Show More
