Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as mean absolute error (MAE), root mean square error (RMSE), and R-squared. The future forecast is compared with an outcome of a previous physical model that integrates wells and reservoir properties to simulate gas production using regressions and forecasts based on empirical and theoretical relationships. Regression analysis ensures alignment between historical data and model predictions, forming a baseline for hybrid model performance evaluation. The results reveal the complementary attributes of these methodologies, providing insights into integrating data-driven and physics-based approaches for optimal reservoir management. The hybrid model captured the production rate conservatively with an extra margin of three years in favor of the physical model.
Amongst the literary writers who used their art to direct the attention towards the issue of woman and her rights in a proper life is the English poet and novelist Thomas Hardy (1840-1928), who has been praised for his “openness to the feminine principle” 1 as Irving Howe put it. Hardy’s wide readings have changed his way of dealing with and thinking about so many critical issues which started to float on the surface of the English society during the mid and late of the 19th century. His readings for a number of writers, who seem of huge impact on his writings as he later admits that – “[his] pages show harmony of view with
... Show MoreBacteria strain H7, which produces flocculating substances, was isolated from the soil of corn field at the College of Agriculture in Abu-Ghrib/Iraq, and identified as Bacillus subtilis by its biochemical /physiological characteristics. The biochemical analysis of the partially purified bioflocculant revealed that it was a proteoglycan composed of 93.2 % carbohydrate and 6.1 % protein. The effects of bioflocculant dosage, temperature, pH, and different salts on the flocculation activity were evaluated. The maximum flocculation activity was observed at an optimum bioflocculant dosage of 0.2 mL /10 mL (49.6%). The bioflocculant had strong thermal stability within the range of 30-80 °C, and the flocculating activity was over 50 %. The biofloc
... Show MoreImitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co
... Show MorePatients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreEstimating the semantic similarity between short texts plays an increasingly prominent role in many fields related to text mining and natural language processing applications, especially with the large increase in the volume of textual data that is produced daily. Traditional approaches for calculating the degree of similarity between two texts, based on the words they share, do not perform well with short texts because two similar texts may be written in different terms by employing synonyms. As a result, short texts should be semantically compared. In this paper, a semantic similarity measurement method between texts is presented which combines knowledge-based and corpus-based semantic information to build a semantic network that repre
... Show MoreAbstract:
Witness the current business environment changes rapidly reflected on the performance of the facility wishing to stay , which is no longer style reaction enough to handle installations with their environment , and quickly began to lose its luster with the emergence of a message and the vision of contemporary business environment from a set of parts interacting with each other and the concept of behavioral includes all dimensions of performance, it is imperative to adopt a system installations influence variables and positive interaction through the development of strategic plans and the use of implementation and follow-up strategies to ensure the effectiveness of the method for meas
... Show MoreBackground: Lowering the amount of iodinated contrast material and tube voltage may increase pulmonary artery opacification and thrombus identification without compromising picture quality.
Objectives: To explore the efficiency of using lower tube voltage and a lower contrast medium dose for conducting computed tomography for pulmonary angiography (CTPA) aiming to increase its accuracy in detecting pulmonary thromboembolism (PTE).
Subjects and Methods:100 patients scheduled for CTPA with a preoperative diagnosis of PTE were grouped into two: group A, (50 patients) got 1 mL/kg at 120 kV and group B, (50 patients) received 0.5 mL/kg at 80 kV.The tec
... Show MoreBackground: The physiologic, biochemical and anatomic changes that occur during pregnancy are extensive and may be systemic or local. However, most of these changes return to pre pregnancy status six weeks postpartum. The aim of the study was to investigate the effect of dental caries among preterm postpartum women and it's relation to baby birth weight and salivary interleukin-6 (IL-6). Materials and methods: 66 postpartum women were examined, 33 preterm postpartum women (study group) and 33 full term postpartum women (control group). Dental caries was recorded using, decayed, missing and filled surfaces index, also assess the decayed lesion by severity. Salivary samples were taken from all subjects to estimate salivary IL-6 levels. Babie
... Show More