Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as mean absolute error (MAE), root mean square error (RMSE), and R-squared. The future forecast is compared with an outcome of a previous physical model that integrates wells and reservoir properties to simulate gas production using regressions and forecasts based on empirical and theoretical relationships. Regression analysis ensures alignment between historical data and model predictions, forming a baseline for hybrid model performance evaluation. The results reveal the complementary attributes of these methodologies, providing insights into integrating data-driven and physics-based approaches for optimal reservoir management. The hybrid model captured the production rate conservatively with an extra margin of three years in favor of the physical model.
Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation. Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annota
... Show MoreThe Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone
... Show MoreEmpirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show MoreChurning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreAbstract: Background: Drug toxicity and chemotherapeutic side effects negatively impact the quality of life of breast cancer patients. Objectives: to evaluate the efficacy of pharmaceutical Interventions (PI) on quality of life (QOL)Among chemotherapy intake breast cancer women. Method: A pre-post interventional study was carried out at the chemotherapy ward of Alhabobi Hospital in Alnasiriyah City. Eligible patients received comprehensive pharmaceutical care and a self-compiled Breast Cancer Patients Medication Knowledge Guide pamphlet. Each patient received two sessions, the first at baseline and the second after 7, 14, or 21 days depending on the next taking dose of chemotherapy. Each session lasted for approximately 15-30 minutes. Par
... Show MoreIn this paper has been one study of autoregressive generalized conditional heteroscedasticity models existence of the seasonal component, for the purpose applied to the daily financial data at high frequency is characterized by Heteroscedasticity seasonal conditional, it has been depending on Multiplicative seasonal Generalized Autoregressive Conditional Heteroscedastic Models Which is symbolized by the Acronym (SGARCH) , which has proven effective expression of seasonal phenomenon as opposed to the usual GARCH models. The summarizing of the research work studying the daily data for the price of the dinar exchange rate against the dollar, has been used autocorrelation function to detect seasonal first, then was diagnosed wi
... Show MoreBackground: Fluoridated acrylic resin material can present more stable properties when compared with conventional one.The most widely used fluoride –containing substance added to dental resin materials is sodium fluoride (Naf). This study evaluated the effect of Naf in different concentration to the acrylic resin denture base material and its effect on tensile strength ,modules of elasticity with long –term water immersion (after 4 months immersion in de-ionized water) Materials and methods: Eighty specimens from dumbbells shaped metal pattern for tensile strength test were preparedaccording to ISO 527: 1993 plastic –Determination tensile properties ,in dimensions(60mm, 12mm, 3 ± 0.2mm) length, width and depth respec
... Show More