In this work, lead oxide (PbO) thin films were deposited using D.C. sputtering method on a surface of glass substrates and then thermally annealed at a temperature of 473K with annealing times of (1,2 and 3) hours. The structural, morphological, and optical properties of films were determined using X-ray diffraction (XRD), atomic force microscopy (AFM), FT-IR, and UV-Visible spectroscopy. The structure studies confirmed that PbO films are polycrystalline structures in an orthorhombic phase with average grain size (24.51, 29.64, 46.49, 16) nm with increasing annealing time. From AFM, the roughness of the film surface (3.26, 1.76, 1.61, 1.79) nm as the film annealing time increases. The optical band gap values of the PbO thin fi
... Show MoreThis work is divided into two parts first part study electronic structure and vibration properties of the Iobenguane material that is used in CT scan imaging. Iobenguane, or MIBG, is an aralkylguanidine analog of the adrenergic neurotransmitter norepinephrine and a radiopharmaceutical. It acts as a blocking agent for adrenergic neurons. When radiolabeled, it can be used in nuclear medicinal diagnostic techniques as well as in neuroendocrine antineoplastic treatments. The aim of this work is to provide general information about Iobenguane that can be used to obtain results to diagnose the diseases. The second part study image processing techniques, the CT scan image is transformed to frequency domain using the LWT. Two methods of contrast
... Show MoreThe effect of micro-and nano silica particles (silica SiO2 (100 μm), Fused silica (12nm)) on some mechanical properties of epoxy resin was investigated (Young's modulus, Flexural strength). The micro-and nano composites were prepared by using three steps process with different volume fraction of micro-and nano particles (1, 2, 3, 4, 5, 7, 10, 15, and 20 vol. %). Flexural strength and Young's modulus of nano composites were increased at low volume fraction (max. enhancement at 4 vol.% ). However at higher volume fraction both Young's modulus and flexural strength decrease. Moreover, above, the mechanical properties are enhanced more than that of neat epoxy resin. The flexural strength decreases with increasing the volume fraction of micr
... Show MoreIn this study a new composite material have been prepared and characterized through polymerization of ethylene glycol located between the Bentonite layers with phthalic anhydride. The results showed that the polymer binds with the structure of clay through hydrogen bonding also the polymerization process led to shatter of the three-dimension crystal structure of the clay and isolating layers in the form of nano-scale two-dimensional sheets, the polymer growth around the clay isolated layers work to increase the size particles at microscopic scale. &
... Show MoreFe, Co and Sb nanopowders were fruitfully prepared by electrical wire explosion method in Double distilled and de-ionized water (DDDW) media. The formation of iron, cobalt and antimony (FeCoSb) alloy nanopowder was monitored by X-ray diffraction. The x-ray diffraction pattern indicates that there are iron, cobalt and antimony peaks. Optical properties of this alloy nanoparticles were characterized by UV-Visible absorption spectra. The absorption peak position is shifted to the lower wavelengths when the current increases. That means the mean size of the nanoparticles controlled by changing the magnitude of the current. The surface morphological analysis is carried out by employing Scanning Electron Microscope (SEM). Particles with varies
... Show MoreA.C electrical conductivity and dielectric properties for poly
(vinyl alcohol) (PVA) /poly (ethylene oxide) (PEO) blends undoped
and doped with multi-walled carbon nanotube (MWCNTs) with
different concentrations (1, and 3 wt %) in the frequency range
(25x103 - 5x106 Hz) were investigated. Samples of (PVA/PEO)
blends undoped and doped with MWCNTs were prepared using
casting technique. The electrical conductivity measurements showed
that σA.C is frequency dependent and obey the relation σA.C =Aωs for
undoped and doped blends with 1% MWCNTs, while it is frequency
independent with increases of MWCNTs content to 3%. The
exponent s showed proceeding increase with the increase of PEO
ratio (≥50%) for undope
Polycaprolactone is one of the natural biodegradable polymers mainly used in bioplastics production for packaging, usually composed of non-toxic compounds and biodegradable. The aim was to examine the role of zinc oxide (ZnO) nanopowder on the,wettability , thermal and anti-bacterial effect nanocomposites. Pure PCL and PCL-based bio- nanocomposites doped with various ratios of ZnO nanoparticles from 0% to 5wt% were prepared through the arrangement of throwing procedure. The results show that wettability properties in relation to ideal PCL and that they were increasingly hydrophobic from 57º.8 to 69º.53 because add ZnO nanocomposites,the thermal stability between 300 and 400 ° C makes them perfect for the application
... Show MoreLow cost Co-Precipitation method was used for Preparation of novel nickel oxide (NiO) nano particle thin films with Simple, with two different PH values 6, 12 and its effect on structural and optical properties as an active optical filter. Experimental results of structural properties X-ray diffraction (XRD) showed that both Nickel oxide nanoparticles with (PH=6 and 12) have polycrystalline structure smaller average particle size about 8.5 nm for PH=6 in comparison with PH=12. Morphological studies using Scanning electron microscopy (SEM) and atomic force microscope (AFM) show uniform nano rod distribution for PH=6 with smaller average diameter, average roughness as compared with NiO with
... Show MoreAlloy of (HgTe) has been prepared succesful in evacuated qurtz ampoule at pressure 4×10-5torr, and melting temperature equal to 823K for five days. Thin films of HgTe of thickness 1μm were deposited on NaCl crystal by thermal evaporation technique at room temperature under vacuum about 4×10-5torr as well as investiagtion in the optical porperties included (absorption coefficient , energy gap) of HgTe films and The optical measurements showed that HgTe film has direct energy gap equal to 0.05 eV. The optical constants (n, k, εr, εi) have been measured over will range (6-28)μm.