Mature oil reservoirs surrounded with strong edge and bottom water drive aquifers experience pressure depletion and water coning/cresting. This laboratory research investigated the effects of bottom water drive and gas breakthrough on immiscible CO2-Assisted Gravity Drainage (CO2-AGD), focusing on substantial bottom water drive. The CO2-AGD method vertically separates the injected CO2 to formulate a gas cap and Oil. Visual experimental evaluation of CO2-AGD process performance was performed using a Hele-Shaw model. Water-wet sand was used for the experiments. The gas used for injection was pure CO2, and the “oleic” phase was n-decane with a negative spreading coefficient. The aqueous phase was deionized water. To evaluate the feasibility of the CO2-AGD process without any bottom water drives, it was first used. The experimental results demonstrated that existence of bottom water drive affected oil recoveries due to pressure support. Oil recovery before gas breakthrough increases proportionally with bottom water drive intensity. The gas breakthrough time recoveries for CO2-AGD1, CO2-AGD2, and CO2-AGD3 runs were 38.68%, 50.70%, and 60.85% of OOIP. The pressure gradient along the physical model decreases as bottom water drive intensity increases. The CO2-AGD approach delayed gas breakout by 72 min. As aquifer strength increases, gas breakthrough is delayed. In the three CO2-AGD runs and after breakthrough occurrence, the injector-producer pressure difference decreased due to the residual heads of oil and water columns above the horizontal well. As long as oil and water exist in the model, the pressure differential will not be zero, and the relative permeability and capillary trapping also control this phenomenon. Finally, it was demonstrated that there is a direct correlation between the strength of the aquifer and the oil recovery factor. The strength of the aquifer positively affects the oil recovery at breakthrough and the ultimate oil recovery.
The present work reports an approach of hydrothermal growth of ZnO nanorods, which simplifies the production of low cost films with controlled morphology for H2S gas sensor application. The prepared ZnO nanorods exhibit a hexagonal wurtzite phase analyzed by the X-ray diffraction analysis. The FTIR spectra provide information that the band located between 465-570 cm-1 corresponds to the stretching bond of Zn-O, which confirms the creation of ZnO. PL spectroscopic studies showed that the doping of Ag NPs and f-MWCNT in the ZnO matrix leads to the tuning of the bandgap. The SEM analysis showed the morphology of ZnO was the nanorods. The nanocomposites Ag/ZnO and F-MWCNT/ZnO which prepared, sep
... Show MoreScientists are investigating the efficacy of different biosorbents for promoting economic and environmental viability in purifying contaminants. Among the primary by-products of biodiesel production is waste microalgae biomass, which has the potential to be used as a cheap biosorbent for the treatment of pollution. In the present study, the biomass left over after extracting the chlorella vulgaris was used to test the potential biosorption of CIP from simulated aqueous solutions. Bisorbent's ability was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Analysis with a Fourier Transform Infrared Spectrometer revealed that C
... Show MoreThe objective of this paper was to study the laser spot welding process of low carbon steel sheet. The investigations were based on analytical and finite element analyses. The analytical analysis was focused on a consistent set of equations representing interaction of the laser beam with materials. The numerical analysis based on 3-D finite element analysis of heat flow during laser spot welding taken into account the temperature dependence of the physical properties and latent heat of transformations using ANSYS code V.10.0 to simulate the laser welding process. The effect of laser operating parameters on the results of the temperature profile were studied in addition to the effect on thermal stresses and dimensions of the laser w
... Show MoreThis work aims to optimize surface roughness, wall angle deviation, and average wall thickness as output responses of ALuminium-1050 alloy cone formed by the single point incremental sheet metal forming process. The experiments are accomplished based on the use of a mixed level Taguchi experimental design with an L18 orthogonal array. Six levels of step depth, three levels of tool diameter, feed rate, and tool rotational speed have been considered as input process parameters. The analyses of variance (ANOVA) have been used to investigate the significance of parameters and the effect of their levels for minimum surface roughness, minimum wall angle deviation, and maximum average wall thickness. The results indicate that step depth and tool r
... Show MoreThe presence of residual antibiotics in water results in the development of antibiotics resistant genes. The available wastewater treatment systems are not capable of removing such antibiotics from sewage. Thus, antibiotics need to be removed before the discharge of wastewater. Adsorption is among the promising techniques for the wastewater treatment to aid the removal of a wide range of organic and inorganic pollutants. The present work is a contribution to the search for an economical method for the removal of low concentrations of amoxicillin (AMX) from water by adsorption on water treatment residue, WTR, taken from a local drinking water facility. The chemical composition and the adsorptive characteristics of the material were first
... Show MoreChlorine disinfection is a globally used method to ensure the safety of drinking water. However, it has not always been successful against viruses and, therefore, it is important to find new methods to disinfect water. Seventeen different coliphages were isolated from the treated municipal wastewater. These coliphages and MS2 were treated with different dosages of chlorine in drinking water, and a combined chlorine/ultraviolet irradiation treatment for the chlorine-resistant coliphages. Chlorine disinfection with 0.3–0.5 mg/L total chlorine (free Cl-dosage 0.12–0.21 mg/L) for 10 min achieved 2.5–5.7 Log10-reductions for 11 sensitive coliphages. The six most resistant coliphages showed no reduction with these chlorine concentra
... Show MoreOne of the goals of adding adjuvants to agricultural spray solutions is to enhance the droplet size characteristics of this spray. Droplet size, in turn, has an influence in the deposited spray quality, in addition to the drift and losses of spray to off-target places. The aim of this research was to evaluate the effect of adding adjuvants to two types of water from different sources on the droplet size characteristics. Two types of adjuvants were employed in the tests: the active substance content of the first adjuvant was a 50% aqueous solution of sodium salt of alkylbenzenesulfonic acid—10% (HY), whereas the second was from rapeseed oil (natural origin)—85% (OL). Both adjuvants were tested in two concentrations: the first was
... Show MoreAs a result of rapid industrialization and population development, toxic chemicals have been introduced into water systems in recent decades. Because of its excellent efficiency and simple design, the three-dimensional (3D) electro-Fenton method has been used for the treatment of wastewater. The goal of the current study is to explore the efficiency of phenol removal by the 3D electro-Fenton process, which is one of the advanced oxidation processes (AOPs). In the present work, the effect of the addition of granular activated carbon (GAC) particles to the electro-Fenton system as the third electrode would be investigated in the presence of graphite as the anode and nickel foam as the cathode, which is the source of electro-generated hydrogen
... Show More